Linux 多线程编程(二)2019-08-10

Linux 多线程编程(二)2019-08-10,第1张

三种专门用于线程同步的机制:POSIX信号量,互斥量和条件变量.

在Linux上信号量API有两组,一组是System V IPC信号量,即PV *** 作,另外就是POSIX信号量,POSIX信号量的名字都是以sem_开头.

phshared参数指定信号量的类型,若其值为0,就表示这个信号量是当前进程的局部信号量,否则该信号量可以在多个进程之间共享.value值指定信号量的初始值,一般与下面的sem_wait函数相对应.

其中比较重要的函数sem_wait函数会以原子 *** 作的方式将信号量的值减一,如果信号量的值为零,则sem_wait将会阻塞,信号量的值可以在sem_init函数中的value初始化sem_trywait函数是sem_wait的非阻塞版本sem_post函数将以原子的 *** 作对信号量加一,当信号量的值大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒.

这些函数成功时返回0,失败则返回-1并设置errno.

生产者消费者模型:

生产者对应一个信号量:sem_t producer

消费者对应一个信号量:sem_t customer

sem_init(&producer,2)----生产者拥有资源,可以工作

sem_init(&customer,0)----消费者没有资源,阻塞

在访问公共资源前对互斥量设置(加锁),确保同一时间只有一个线程访问数据,在访问完成后再释放(解锁)互斥量.

互斥锁的运行方式:串行访问共享资源

信号量的运行方式:并行访问共享资源

互斥量用pthread_mutex_t数据类型表示,在使用互斥量之前,必须使用pthread_mutex_init函数对它进行初始化,注意,使用完毕后需调用pthread_mutex_destroy.

pthread_mutex_init用于初始化互斥锁,mutexattr用于指定互斥锁的属性,若为NULL,则表示默认属性。除了用这个函数初始化互斥所外,还可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。

pthread_mutex_destroy用于销毁互斥锁,以释放占用的内核资源,销毁一个已经加锁的互斥锁将导致不可预期的后果。

pthread_mutex_lock以原子 *** 作给一个互斥锁加锁。如果目标互斥锁已经被加锁,则pthread_mutex_lock则被阻塞,直到该互斥锁占有者把它给解锁.

pthread_mutex_trylock和pthread_mutex_lock类似,不过它始终立即返回,而不论被 *** 作的互斥锁是否加锁,是pthread_mutex_lock的非阻塞版本.当目标互斥锁未被加锁时,pthread_mutex_trylock进行加锁 *** 作;否则将返回EBUSY错误码。注意:这里讨论的pthread_mutex_lock和pthread_mutex_trylock是针对普通锁而言的,对于其他类型的锁,这两个加锁函数会有不同的行为.

pthread_mutex_unlock以原子 *** 作方式给一个互斥锁进行解锁 *** 作。如果此时有其他线程正在等待这个互斥锁,则这些线程中的一个将获得它.

三个打印机轮流打印:

输出结果:

如果说互斥锁是用于同步线程对共享数据的访问的话,那么条件变量就是用于在线程之间同步共享数据的值.条件变量提供了一种线程之间通信的机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的线程.

条件变量会在条件不满足的情况下阻塞线程.且条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生.

其中pthread_cond_broadcast函数以广播的形式唤醒所有等待目标条件变量的线程,pthread_cond_signal函数用于唤醒一个等待目标条件变量线程.但有时候我们可能需要唤醒一个固定的线程,可以通过间接的方法实现:定义一个能够唯一标识目标线程的全局变量,在唤醒等待条件变量的线程前先设置该变量为目标线程,然后采用广播的方式唤醒所有等待的线程,这些线程被唤醒之后都检查该变量以判断是否是自己.

采用条件变量+互斥锁实现生产者消费者模型:

运行结果:

阻塞队列+生产者消费者

运行结果:

1、物理CPU数:机器主板上实际插入的cpu数量,比如说你的主板上安装了一块8核CPU,那么物理CPU个数就是1个,所以物理CPU个数就是主板上安装的CPU个数。

2、物理CPU核数:单个物理CPU上面有多个核,物理CPU核数=物理CPU数✖️单个物理CPU的核

3、逻辑CPU核数:一般情况,我们认为一颗CPU可以有多个核,加上intel的超线程技术(HT), 可以在逻辑上再分一倍数量的CPU core出来。逻辑CPU核数=物理CPU数✖️单个物理CPU的核*2

4、超线程技术(Hyper-Threading):就是利用特殊的硬件指令,把两个逻辑CPU模拟成两个物理CPU,实现多核多线程。我们常听到的双核四线程/四核八线程指的就是支持超线程技术的CPU。

1、并行:两件(多件)事情在同一时刻一起发生。

2、并发:两件(多件)事情在同一时刻只能有一个发生,由于CPU快速切换,从而给人的感觉是同时进行。

3、进程和线程

进程是资源分配的最小单位,一个程序有至少一个进程。线程是程序执行的最小单位。一个进程有至少一个线程。

线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。

4、单核多线程:单核CPU上运行多线程, 同一时刻只有一个线程在跑,系统进行线程切换,系统给每个线程分配时间片来执行,看起来就像是同时在跑, 但实际上是每个线程跑一点点就换到其它线程继续跑。

5、多核多线程:每个核上各自运行线程,同一时刻可以有多个线程同时在跑。

1、对于单核:多线程和多进程的多任务是在单cpu交替执行(时间片轮转调度,优先级调度等),属于并发

2、对于多核:同一个时间多个进程运行在不同的CPU核上,或者是同一个时间多个线程能分布在不同的CPU核上(线程数小于内核数),属于并行。

3、上下文切换:上下文切换指的是内核( *** 作系统的核心)在CPU上对进程或者线程进行切换。上下文切换过程中的信息被保存在进程控制块(PCB-Process Control Block)中。PCB又被称作切换帧(SwitchFrame)。上下文切换的信息会一直被保存在CPU的内存中,直到被再次使用。

CPU 亲和性(affinity)就是进程要在某个给定的 CPU 上尽量长时间地运行而不被迁移到其他处理器的倾向性。这样可以减少上下文切换的次数,提高程序运行性能。可分为:自然亲和性和硬亲和性

1、自然亲和性:就是进程要在指定的 CPU 上尽量长时间地运行而不被迁移到其他处理器,Linux 内核进程调度器天生就具有被称为 软 CPU 亲和性(affinity) 的特性,这意味着进程通常不会在处理器之间频繁迁移。这种状态正是我们希望的,因为进程迁移的频率小就意味着产生的负载小。Linux调度器缺省就支持自然CPU亲和性(natural CPU affinity): 调度器会试图保持进程在相同的CPU上运行。

2、硬亲和性:简单来说就是利用linux内核提供给用户的API,强行将进程或者线程绑定到某一个指定的cpu核运行。Linux硬亲和性指定API:taskset .

taskset [options] mask command [arg]...

taskset [options] -p [mask] pid

taskset 命令用于设置或者获取一直指定的 PID 对于 CPU 核的运行依赖关系。也可以用 taskset 启动一个命令,直接设置它的 CPU 核的运行依赖关系。

CPU 核依赖关系是指,命令会被在指定的 CPU 核中运行,而不会再其他 CPU 核中运行的一种调度关系。需要说明的是,在正常情况下,为了系统性能的原因,调度器会尽可能的在一个 CPU 核中维持一个进程的执行。强制指定特殊的 CPU 核依赖关系对于特殊的应用是有意义的

CPU 核的定义采用位定义的方式进行,最低位代表 CPU0,然后依次排序。这种位定义可以超过系统实际的 CPU 总数,并不会存在问题。通过命令获得的这种 CPU 位标记,只会包含系统实际 CPU 的数目。如果设定的位标记少于系统 CPU 的实际数目,那么命令会产生一个错误。当然这种给定的和获取的位标记采用 16 进制标识。

0x00000001

代表 #0 CPU

0x00000003

代表 #0 和 #1 CPU

0xFFFFFFFF

代表 #0 到 #31 CPU

-p, --pid

对一个现有的进程进行 *** 作,而不是启动一个新的进程

-c, --cpu-list

使用 CPU 编号替代位标记,这可以是一个列表,列表中可以使用逗号分隔,或者使用 "-" 进行范围标记,例如:0,5,7,9

-h, --help

打印帮助信息

-V, --version

打印版本信息

如果需要设定,那么需要拥有 CAP_SYS_NICE 的权限;如果要获取设定信息,没有任何权限要求。

taskset 命令属于 util-linux-ng 包,可以使用 yum 直接安装。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7335317.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存