linux进程、线程及调度算法(二)

linux进程、线程及调度算法(二),第1张

执行一个 copy,但是只要任何修改,都造成分裂如,修改了chroot,写memory,mmap,sigaction 等。

p1 是一个 task_struct, p2 也是一个 task_struct. linux内核的调度器只认得task_struck (不管你是进程还是线程), 对其进行调度。

p2 的task_struck 被创建出来后,也有一份自己的资源。但是这些资源会短暂的与p1 相同。

进程是区分资源的单位,你的资源是我的资源,那从概念上将就不叫进程。

其他资源都好分配,唯一比较难的是内存资源的重新分配。

非常简单的程序,但是可以充分说明 COW。

结果:10 ->20 ->10

COW 是严重依赖于CPU中的MMU。CPU如果没有 MMU,fork 是不能工作的。

在没有mmu的CPU中,不可能执行COW 的,所以只有vfork

vfork与fork相比的不同

P2没有自己的 task_struct, 也就是说P1 的内存资源 就是 P2的内存资源。

结果 10,20,20

vfork:

vfork 执行上述流程,P2也只是指向了P1的mm,那么将这个vfork 放大,其余的也全部clone,共同指向P1,那么就是线程的属性了。

phtread_create ->Clone()

P1 P2 在内核中都是 task_struct. 都可以被调度。共享资源可调度,即线程。 这就是线程为什么也叫做轻量级进程

不需要太纠结线程和进程的区别。

4651 : TGID

4652, 4653 tid 内核中 task_struct 真正的pid

linux 总是白发人 送 黑发人。如果父进程在子进程推出前挂掉了。那么子进程应该怎么办?

p3 ->init, p5 ->subreaper

每一个孤儿都会找最近的火葬场

可以设置进程的属性,将其变为subreaper,会像1号进程那样收养孤儿进程。

linux的进程睡眠依靠等待队列,这样的机制类似与涉及模式中的订阅与发布。

睡眠,分两种

每一个进程都是创建出来的,那么第一个进程是谁创建的呢?

init 进程是被linux的 0 进程 创建出来的。开机创建。

父进程就是 0 号进程,但在pstree,是看不到0进程的。因为0进程创建子进程后,就退化成了idle进程。

idle进程是 linux内核里,特殊调度类。 所有进程都睡眠停止 ,则调度idle进程,进入到 wait for interrupte 等中断。此时 cpu及其省电,除非来一个中断,才能再次被唤醒。

唤醒后的任何进程,从调度的角度上说,都比idle进程地位高。idle是调度级别最最低的进程。

0 进程 一跑,则进入等中断。一旦其他进程被唤醒,就轮不到 0进程了。

所有进程都睡了,0就上来,则cpu需要进入省电模式

1、物理CPU数:机器主板上实际插入的cpu数量,比如说你的主板上安装了一块8核CPU,那么物理CPU个数就是1个,所以物理CPU个数就是主板上安装的CPU个数。

2、物理CPU核数:单个物理CPU上面有多个核,物理CPU核数=物理CPU数✖️单个物理CPU的核

3、逻辑CPU核数:一般情况,我们认为一颗CPU可以有多个核,加上intel的超线程技术(HT), 可以在逻辑上再分一倍数量的CPU core出来。逻辑CPU核数=物理CPU数✖️单个物理CPU的核*2

4、超线程技术(Hyper-Threading):就是利用特殊的硬件指令,把两个逻辑CPU模拟成两个物理CPU,实现多核多线程。我们常听到的双核四线程/四核八线程指的就是支持超线程技术的CPU。

1、并行:两件(多件)事情在同一时刻一起发生。

2、并发:两件(多件)事情在同一时刻只能有一个发生,由于CPU快速切换,从而给人的感觉是同时进行。

3、进程和线程

进程是资源分配的最小单位,一个程序有至少一个进程。线程是程序执行的最小单位。一个进程有至少一个线程。

线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。

4、单核多线程:单核CPU上运行多线程, 同一时刻只有一个线程在跑,系统进行线程切换,系统给每个线程分配时间片来执行,看起来就像是同时在跑, 但实际上是每个线程跑一点点就换到其它线程继续跑。

5、多核多线程:每个核上各自运行线程,同一时刻可以有多个线程同时在跑。

1、对于单核:多线程和多进程的多任务是在单cpu交替执行(时间片轮转调度,优先级调度等),属于并发

2、对于多核:同一个时间多个进程运行在不同的CPU核上,或者是同一个时间多个线程能分布在不同的CPU核上(线程数小于内核数),属于并行。

3、上下文切换:上下文切换指的是内核( *** 作系统的核心)在CPU上对进程或者线程进行切换。上下文切换过程中的信息被保存在进程控制块(PCB-Process Control Block)中。PCB又被称作切换帧(SwitchFrame)。上下文切换的信息会一直被保存在CPU的内存中,直到被再次使用。

CPU 亲和性(affinity)就是进程要在某个给定的 CPU 上尽量长时间地运行而不被迁移到其他处理器的倾向性。这样可以减少上下文切换的次数,提高程序运行性能。可分为:自然亲和性和硬亲和性

1、自然亲和性:就是进程要在指定的 CPU 上尽量长时间地运行而不被迁移到其他处理器,Linux 内核进程调度器天生就具有被称为 软 CPU 亲和性(affinity) 的特性,这意味着进程通常不会在处理器之间频繁迁移。这种状态正是我们希望的,因为进程迁移的频率小就意味着产生的负载小。Linux调度器缺省就支持自然CPU亲和性(natural CPU affinity): 调度器会试图保持进程在相同的CPU上运行。

2、硬亲和性:简单来说就是利用linux内核提供给用户的API,强行将进程或者线程绑定到某一个指定的cpu核运行。Linux硬亲和性指定API:taskset .

taskset [options] mask command [arg]...

taskset [options] -p [mask] pid

taskset 命令用于设置或者获取一直指定的 PID 对于 CPU 核的运行依赖关系。也可以用 taskset 启动一个命令,直接设置它的 CPU 核的运行依赖关系。

CPU 核依赖关系是指,命令会被在指定的 CPU 核中运行,而不会再其他 CPU 核中运行的一种调度关系。需要说明的是,在正常情况下,为了系统性能的原因,调度器会尽可能的在一个 CPU 核中维持一个进程的执行。强制指定特殊的 CPU 核依赖关系对于特殊的应用是有意义的

CPU 核的定义采用位定义的方式进行,最低位代表 CPU0,然后依次排序。这种位定义可以超过系统实际的 CPU 总数,并不会存在问题。通过命令获得的这种 CPU 位标记,只会包含系统实际 CPU 的数目。如果设定的位标记少于系统 CPU 的实际数目,那么命令会产生一个错误。当然这种给定的和获取的位标记采用 16 进制标识。

0x00000001

代表 #0 CPU

0x00000003

代表 #0 和 #1 CPU

0xFFFFFFFF

代表 #0 到 #31 CPU

-p, --pid

对一个现有的进程进行 *** 作,而不是启动一个新的进程

-c, --cpu-list

使用 CPU 编号替代位标记,这可以是一个列表,列表中可以使用逗号分隔,或者使用 "-" 进行范围标记,例如:0,5,7,9

-h, --help

打印帮助信息

-V, --version

打印版本信息

如果需要设定,那么需要拥有 CAP_SYS_NICE 的权限;如果要获取设定信息,没有任何权限要求。

taskset 命令属于 util-linux-ng 包,可以使用 yum 直接安装。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7604737.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-07
下一篇 2023-04-07

发表评论

登录后才能评论

评论列表(0条)

保存