人脸检测库:libfacedetection

这是一个基于cnn的图像人脸检测的开源库。CNN模型已被转换为C源文件中的静态变量。源代码不依赖于任何其他库。你所需要的只是一个c++编译器。您可以使用c++编译器在Windows、Linux、ARM和任何平台下编译源代码。SIMD指令用于加速检测。如果您使用Intel CPU或NEON for ARM,则可以启用AVX2。在目录中还提供了模型文件models/examples/libfacedetectcn -example.cpp展示了如何使用这个库。

使用g++编译源代码时,请添加-03以启用优化。

使用Microsoft Visual Studio编译源代码时,请选择“最大化速度/-02”。

1.设置AArch64交叉编译器(请参考AArch64工具链.cmake)

2.设置OpenCV路径,因为示例代码依赖于OpenCV

OpenCV Haar+AdaBoost以最小的面尺寸48x48运行

只检测人脸,不包含地区检测。

最小面尺寸~12x12

Intel(R) Core(TM) i7-7700 CPU @ 3.6GHz

只检测人脸,不包含地区检测。

最小面尺寸~12x12

Raspberry Pi 3B+, 博通 BCM2837BO, Cortex-A53 (ARMv8) 64位SoC @ 1.4GHz

Shiqi Yu, shiqi.yu@gmail.com

本研究由深圳市科学基金(批准号:JCYJ20150324141711699)。

linux系统下qt加入opencv下的人脸识别数据库需要从网络上下载。

1、就是数据的准备,你要从网络上下载一些人脸库,后面用来训练人脸识别模型。人脸检测模型opencv是自带的,但是识别模型需要自己训练。下载人脸库之后需要对人脸进行标记,这是一个繁琐的工作,不过网上有脚本或者自己写个程序简化工作量。

2、把数据标记好之后就是opencv的事情。

3、打开摄像头进行人脸检测,就是框出人脸的位置。人脸检测模型是opencv自带的。

您好,这样的:

基于Gabor特征提取和人工智能的人脸检测系统源代码Face Detection System

这是一个使用了Gabor特征提取和人工智能的人脸检测系统源代码关键内容

使用步骤:

拷贝所有文件到MATLAB工作目录下(确认已经安装了图像处理工具箱和人工智能工具箱)

2. 找到"main.m"文件

3. 命令行中运行它

4. 点击"Train Network",等待程序训练好样本

5. 点击"Test on Photos",选择一个.jpg图片,识别。

6. 等待程序检测出人脸区域

createffnn.m, drawrec.m, gabor.m, im2vec.m, imscan.m, loadimages.m, main.m, template1.png, template2.png, trainnet.m。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8252110.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-14
下一篇 2023-04-14

发表评论

登录后才能评论

评论列表(0条)

保存