常用的同步方式有: 互斥锁、条件变量、读写锁、记录锁(文件锁)和信号灯.
互斥锁:
顾名思义,锁是用来锁住某种东西的,锁住之后只有有钥匙的人才能对锁住的东西拥有控制权(把锁砸了,把东西偷走的小偷不在我们的讨论范围了)。所谓互斥, 从字面上理解就是互相排斥。因此互斥锁从字面上理解就是一点进程拥有了这个锁,它将排斥其它所有的进程访问被锁住的东西,其它的进程如果需要锁就只能等待,等待拥有锁的进程把锁打开后才能继续运行。 在实现中,锁并不是与某个具体的变量进行关联,它本身是一个独立的对象。进(线)程在有需要的时候获得此对象,用完不需要时就释放掉。
互斥锁的主要特点是互斥锁的释放必须由上锁的进(线)程释放,如果拥有锁的进(线)程不释放,那么其它的进(线)程永远也没有机会获得所需要的互斥锁。
互斥锁主要用于线程之间的同步。
条件变量:
上文中提到,对于互斥锁而言,如果拥有锁的进(线)程不释放锁,其它进(线)程永远没机会获得锁,也就永远没有机会继续执行后续的逻辑。在实际环境下,一 个线程A需要改变一个共享变量X的值,为了保证在修改的过程中X不会被其它的线程修改,线程A必须首先获得对X的锁。现在假如A已经获得锁了,由于业务逻 辑的需要,只有当X的值小于0时,线程A才能执行后续的逻辑,于是线程A必须把互斥锁释放掉,然后继续“忙等”。如下面的伪代码所示:
1.// get x lock
2.while(x
进程间通信有一种[共享内存]方式,大家有没有想过,这种通信方式中如何解决数据竞争问题?我们可能自然而然的就会想到用锁。但我们平时使用的锁都是用于解决线程间数据竞争问题,貌似没有看到过它用在进程中,那怎么办?
关于进程间的通信方式估计大多数人都知道,这也是常见的面试八股文之一。
个人认为这种面试题没什么意义,无非就是答几个关键词而已,更深入的可能面试官和面试者都不太了解。
关于进程间通信方式我之前在【这篇文章】中有过介绍,感兴趣的可以移步去看哈。
进程间通信有一种[共享内存]方式,大家有没有想过,这种通信方式中如何解决数据竞争问题?
我们可能自然而然的就会想到用锁。但我们平时使用的锁都是用于解决线程间数据竞争问题,貌似没有看到过它用在进程中,那怎么办?
我找到了两种方法,信号量和互斥锁。
直接给大家贴代码吧,首先是信号量方式:
代码中的MEOW_DEFER,它内部的函数会在生命周期结束后触发。它的核心函数其实就是下面这四个:
具体含义大家应该看名字就知道,这里的重点就是sem_init中的pshared参数,该参数为1表示可在进程间共享,为0表示只在进程内部共享。
第二种方式是使用锁,即pthread_mutex_t,可是pthread_mutex不是用作线程间数据竞争的吗,怎么能用在进程间呢?
可以给它配置一个属性,示例代码如下:
它的默认属性是进程内私有,但是如果给它配置成PTHREAD_PROCESS_SHARED,它就可以用在进程间通信中。
相关视频推荐
360度无死角讲解进程管理,调度器的5种实现
Linux进程间通信-信号量、消息队列和共享内存
学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂
需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括 C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg 等),免费分享
完整代码如下:
我想这两种方式应该可以满足我们日常开发过程中的大多数需求。
锁的方式介绍完之后,可能很多朋友自然就会想到原子变量,这块我也搜索了一下。但是也不太确定C++标准中的atomic是否在进程间通信中有作用,不过看样子boost中的atomic是可以用在进程间通信中的。
其实在研究这个问题的过程中,还找到了一些很多解决办法,包括:
Disabling Interrupts
Lock Variables
Strict Alternation
Peterson's Solution
The TSL Instruction
Sleep and Wakeup
Semaphores
Mutexes
Monitors
Message Passing
Barriers
这里就不过多介绍啦,大家感兴趣的可以自行查阅资料哈。
Linux系统中,实现线程同步的方式大致分为六种,其中包括:互斥锁、自旋锁、信号量、条件变量、读写锁、屏障。最常用的线程同步方式就是互斥锁、自旋锁、信号量:
1、互斥锁
互斥锁本质就是一个特殊的全局变量,拥有lock和unlock两种状态,unlock的互斥锁可以由某个线程获得,当互斥锁由某个线程持有后,这个互斥锁会锁上变成lock状态,此后只有该线程有权力打开该锁,其他想要获得该互斥锁的线程都会阻塞,直到互斥锁被解锁。
互斥锁的类型:
①普通锁:互斥锁默认类型。当一个线程对一个普通锁加锁以后,其余请求该锁的线程将形成一个等待队列,并在锁解锁后按照优先级获得它,这种锁类型保证了资源分配的公平性。一个线程如果对一个已经加锁的普通锁再次加锁,将引发死锁对一个已经被其他线程加锁的普通锁解锁,或者对一个已经解锁的普通锁再次解锁,将导致不可预期的后果。
②检错锁:一个线程如果对一个已经加锁的检错锁再次加锁,则加锁 *** 作返回EDEADLK对一个已经被其他线程加锁的检错锁解锁或者对一个已经解锁的检错锁再次解锁,则解锁 *** 作返回EPERM。
③嵌套锁:该锁允许一个线程在释放锁之前多次对它加锁而不发生死锁其他线程要获得这个锁,则当前锁的拥有者必须执行多次解锁 *** 作对一个已经被其他线程加锁的嵌套锁解锁,或者对一个已经解锁的嵌套锁再次解锁,则解锁 *** 作返回EPERM。
④默认锁:一个线程如果对一个已经解锁的默认锁再次加锁,或者对一个已经被其他线程加锁的默认锁解锁,或者对一个解锁的默认锁解锁,将导致不可预期的后果这种锁实现的时候可能被映射成上述三种锁之一。
【老男孩教育】Linux运维云计算课程汇集了虚拟化、云计算、安全攻防、Python开发、SRE等技术,课堂效率高、内容丰富全面,由浅入深,循序渐进,帮助学员稳扎稳打,夯实基础,在有限的时间内帮助学员高效提升,成为符合企业需求的技术型人才。
2、自旋锁
自旋锁顾名思义就是一个死循环,不停的轮询,当一个线程未获得自旋锁时,不会像互斥锁一样进入阻塞休眠状态,而是不停的轮询获取锁,如果自旋锁能够很快被释放,那么性能就会很高,如果自旋锁长时间不能够被释放,甚至里面还有大量的IO阻塞,就会导致其他获取锁的线程一直空轮询,导致CPU使用率达到100%,特别CPU时间。
3、信号量
信号量是一个计数器,用于控制访问有限共享资源的线程数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)