1、物理CPU数:机器主板上实际插入的cpu数量,比如说你的主板上安装了一块8核CPU,那么物理CPU个数就是1个,所以物理CPU个数就是主板上安装的CPU个数。
2、物理CPU核数:单个物理CPU上面有多个核,物理CPU核数=物理CPU数✖️单个物理CPU的核
3、逻辑CPU核数:一般情况,我们认为一颗CPU可以有多个核,加上intel的超线程技术(HT), 可以在逻辑上再分一倍数量的CPU core出来。逻辑CPU核数=物理CPU数✖️单个物理CPU的核*2
4、超线程技术(Hyper-Threading):就是利用特殊的硬件指令,把两个逻辑CPU模拟成两个物理CPU,实现多核多线程。我们常听到的双核四线程/四核八线程指的就是支持超线程技术的CPU。
1、并行:两件(多件)事情在同一时刻一起发生。
2、并发:两件(多件)事情在同一时刻只能有一个发生,由于CPU快速切换,从而给人的感觉是同时进行。
3、进程和线程
进程是资源分配的最小单位,一个程序有至少一个进程。线程是程序执行的最小单位。一个进程有至少一个线程。
线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。
4、单核多线程:单核CPU上运行多线程, 同一时刻只有一个线程在跑,系统进行线程切换,系统给每个线程分配时间片来执行,看起来就像是同时在跑, 但实际上是每个线程跑一点点就换到其它线程继续跑。
5、多核多线程:每个核上各自运行线程,同一时刻可以有多个线程同时在跑。
1、对于单核:多线程和多进程的多任务是在单cpu交替执行(时间片轮转调度,优先级调度等),属于并发
2、对于多核:同一个时间多个进程运行在不同的CPU核上,或者是同一个时间多个线程能分布在不同的CPU核上(线程数小于内核数),属于并行。
3、上下文切换:上下文切换指的是内核( *** 作系统的核心)在CPU上对进程或者线程进行切换。上下文切换过程中的信息被保存在进程控制块(PCB-Process Control Block)中。PCB又被称作切换帧(SwitchFrame)。上下文切换的信息会一直被保存在CPU的内存中,直到被再次使用。
CPU 亲和性(affinity)就是进程要在某个给定的 CPU 上尽量长时间地运行而不被迁移到其他处理器的倾向性。这样可以减少上下文切换的次数,提高程序运行性能。可分为:自然亲和性和硬亲和性
1、自然亲和性:就是进程要在指定的 CPU 上尽量长时间地运行而不被迁移到其他处理器,Linux 内核进程调度器天生就具有被称为 软 CPU 亲和性(affinity) 的特性,这意味着进程通常不会在处理器之间频繁迁移。这种状态正是我们希望的,因为进程迁移的频率小就意味着产生的负载小。Linux调度器缺省就支持自然CPU亲和性(natural CPU affinity): 调度器会试图保持进程在相同的CPU上运行。
2、硬亲和性:简单来说就是利用linux内核提供给用户的API,强行将进程或者线程绑定到某一个指定的cpu核运行。Linux硬亲和性指定API:taskset .
taskset [options] mask command [arg]...
taskset [options] -p [mask] pid
taskset 命令用于设置或者获取一直指定的 PID 对于 CPU 核的运行依赖关系。也可以用 taskset 启动一个命令,直接设置它的 CPU 核的运行依赖关系。
CPU 核依赖关系是指,命令会被在指定的 CPU 核中运行,而不会再其他 CPU 核中运行的一种调度关系。需要说明的是,在正常情况下,为了系统性能的原因,调度器会尽可能的在一个 CPU 核中维持一个进程的执行。强制指定特殊的 CPU 核依赖关系对于特殊的应用是有意义的
CPU 核的定义采用位定义的方式进行,最低位代表 CPU0,然后依次排序。这种位定义可以超过系统实际的 CPU 总数,并不会存在问题。通过命令获得的这种 CPU 位标记,只会包含系统实际 CPU 的数目。如果设定的位标记少于系统 CPU 的实际数目,那么命令会产生一个错误。当然这种给定的和获取的位标记采用 16 进制标识。
0x00000001
代表 #0 CPU
0x00000003
代表 #0 和 #1 CPU
0xFFFFFFFF
代表 #0 到 #31 CPU
-p, --pid
对一个现有的进程进行 *** 作,而不是启动一个新的进程
-c, --cpu-list
使用 CPU 编号替代位标记,这可以是一个列表,列表中可以使用逗号分隔,或者使用 "-" 进行范围标记,例如:0,5,7,9
-h, --help
打印帮助信息
-V, --version
打印版本信息
如果需要设定,那么需要拥有 CAP_SYS_NICE 的权限;如果要获取设定信息,没有任何权限要求。
taskset 命令属于 util-linux-ng 包,可以使用 yum 直接安装。
CPU affinity 是一种调度属性(scheduler property), 它可以将一个进程"绑定" 到一个或一组CPU上.在SMP(Symmetric Multi-Processing对称多处理)架构下,Linux调度器(scheduler)会根据CPU affinity的设置让指定的进程运行在"绑定"的CPU上,而不会在别的CPU上运行.
Linux调度器同样支持自然CPU亲和性(natural CPU affinity): 调度器会试图保持进程在相同的CPU上运行, 这意味着进程通常不会在处理器之间频繁迁移,进程迁移的频率小就意味着产生的负载小。
因为程序的作者比调度器更了解程序,所以我们可以手动地为其分配CPU核,而不会过多地占用CPU0,或是让我们关键进程和一堆别的进程挤在一起,所有设置CPU亲和性可以使某些程序提高性能。
在服务器压力特别大,心跳经常丢失从而造成服务超时。经过分析发现网络没有问题,心跳网络包都发过来了而且也正常进入了dispatch队列,但是由于dispatch在处理别的request的时候耗时过长,而且要命的是它还hold着一把全局的锁,导致队列里面的其他queue也无法正常被dispatch。所以我们想到可以利用设置CPU亲和性来保证 核心进程/线程 得到足够的时间片,从而不让服务超时。
说到亲和性,如果我们不隔离CPU,那么就只能减少CPU切换,提高cpu cache的命中率,从而减少内存访问损耗,提高程序的速度。但是这样做只能保证自己不被调度到的别的CPU,却不能阻止其他线程不来我这个CPU。这样就成了“ 我的是公共的,别人的我不能用! ”,岂不是我得到的时间片更少了?所以为了防止这样的窘境,我们还得先“ 隔核 ”再“ 绑核 ”。
我们可以用如下命令来查看自己的服务器有多少个核心:
隔核方法: 修改grub
环境: CentOS7
具体步骤: (隔离4,5核心)
更改一个进程的CPU affinity mask,可以设置一个进程在某个CPU核心上执行,也可以设置该进程在除了某CPU 核心之外的其他CPU核心上执行。如果第一个参数pid为0,则设置当前进程的mask。
其实这个mask是一个针对线程组内的线程属性,可以被独立调节。所以我们可以用gettid()的参数作为第一个参数,同样如果第一个参数为0,则设置当前线程。如果传的getpid的返回值,则设置该线程组的主线程mask属性。
更改一个线程的CPU affinity mask, 同样也是可以设置一个线程在某个CPU核心上执行,也可以设置该线程在除了某CPU 核心之外的其他CPU核心上执行。这两个接口在底层也是调用sched_setaffinity/sched_getaffinity。当第一个参数为0时,就是设置当前thread的mask。
上面我们介绍了两种设置CPU affinity mask的接口,但是无论是哪一种接口有个共同的特性:创建出来的子线程默认会继承父亲线程的CPU affinity mask。在复杂的系统中有时并不希望这个属性的出现,因为可能会导致某个隔离出来的cpu上还是运行了很多的thread。所以我就想了一个解决方案来解决这个问题。
<1> http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
<2> https://linux.die.net/man/2/sched_setaffinity
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)