pytorch中tensor.expand()和tensor.expand_as()函数详解

pytorch中tensor.expand()和tensor.expand_as()函数详解,第1张

pytorch中tensor.expand()和tensor.expand_as()函数详解

tensor.expend()函数

>>> import torch
>>> a=torch.tensor([[2],[3],[4]])
>>> print(a.size())
torch.Size([3, 1])
>>> a.expand(3,2)
tensor([[2, 2],
    [3, 3],
    [4, 4]])
>>> a
tensor([[2],
    [3],
    [4]])

可以看出expand()函数括号里面为变形后的size大小,而且原来的tensor和tensor.expand()是不共享内存的。

tensor.expand_as()函数

>>> b=torch.tensor([[2,2],[3,3],[5,5]])
>>> print(b.size())
torch.Size([3, 2])
>>> a.expand_as(b)
tensor([[2, 2],
    [3, 3],
    [4, 4]])
>>> a
tensor([[2],
    [3],
    [4]])

可以看出,b和a.expand_as(b)的size是一样大的。且是不共享内存的。

以上这篇pytorch中tensor.expand()和tensor.expand_as()函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持考高分网。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3244182.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-04
下一篇 2022-10-04

发表评论

登录后才能评论

评论列表(0条)

保存