MapReduce-WritableComparable排序 (From 尚硅谷)

MapReduce-WritableComparable排序 (From 尚硅谷),第1张

MapReduce-WritableComparable排序 (From 尚硅谷)

个人学习整理,所有资料来自尚硅谷
B站学习连接:添加链接描述

MapReduce-WritableComparable排序 1. WritableComparable排序

1.1 排序概述
  • 排序是MapReduce框架中最重要的 *** 作之一。

  • MapTask和ReduceTask均会对数据按照key进行排序(若key不能进行排序则会报错)。该 *** 作属于Hadoop的默认行为。任何应用程序中的数据会被排序,而不管逻辑上是否需要。

  • 默认排序是按照字典顺序排序,且实现该排序(Map中第一次排序)的方法是快速排序。

  • 对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对环形缓冲区的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据预处理完毕后,它会对磁盘上所有文件进行归并排序。

  • 对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写到磁盘上,否则存储在内存中。如果磁盘上文件数据达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

1.2 排序分类
  1. 部分排序

​ MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。

  1. 全排序

最终输出结果只有一个文件,且内部有序。实现方式是只设置一个ReduceTask,但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行框架。

  1. 辅助排序:(GroupingComparator分组)

在Reduce端对key进行分组。应用于:在接受的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到一个reduce方法时,可以采用分组排序。

  1. 二次排序

在自定义排序中,如果compareTo中的判断条件为两个,即为二次排序。

1.3 WritableComparable排序案例实 *** (全排序)

(1)需求

根据上面统计手机总流量的案例的结果对总流量进行倒序排序,当总流量相等时,按照上行流量正序排序。

数据连接:添加链接描述
提取码:9x8j

(2)分析

(3)代码实现

  • FlowBean对象在需求1基础上增加了比较功能(增加CompareTo方法)
package com.atguigu.mapreduce.writableComparable;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable{//实现Writable接口
    private long upFlow;
    private long downFlow;
    private long sumFlow;

    //反序列化时,需要反射调用空参构造函数,所以必须有空参构造
    public FlowBean() {
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow() {
        this.sumFlow = this.upFlow + this.downFlow;
    }

    //重写序列化方法
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }
    //重写反序列方法
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
        this.sumFlow = dataInput.readLong();
    }
    //反序列化的顺序必须和序列化的顺序相同

    @Override
    public String toString() {
        return upFlow + "t" + downFlow + "t" + sumFlow;
    }
    @Override
    public int compareTo(FlowBean o){
        if (this.sumFlow > o.sumFlow){
            return -1;
        }else if (this.sumFlow < o.sumFlow){
            return 1;
        }else{
            //二次排序:按照上行流量的正排序
            if (this.upFlow > o.sumFlow){
                return 1;
            }else if (this.upFlow < o.upFlow){
                return -1;
            }else {
                return 0;
            }
        }
    }   
}
  • 编写Mapper类
package com.atguigu.mapreduce.writableComparable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
public class FlowMapper extends Mapper{//Mapper输出的key为FlowBean,value为Text
    private FlowBean outK = new FlowBean();
    private Text outV = new Text();
    @Override
    protected void map(LongWritable key, Text value, Mapper.Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();
        //切割
        String[] split = line.split("t");
        //封装
        outV.set(split[0]);
        outK.setUpFlow(Long.parseLong(split[1]));
        outK.setDownFlow(Long.parseLong(split[2]));
        outK.setSumFlow();
        //写出
        context.write(outK,outV);
    }
}
  • Reducer类
package com.atguigu.mapreduce.writableComparable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReducer extends Reducer {
    @Override
     protected void reduce(FlowBean key, Iterable values, Reducer.Context context) throws IOException, InterruptedException {
         for (Text value:values){
             context.write(value,key);
         }
     }
}
  • Driver类
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //1、获取配置信息以及获取job对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2、关联本Driver的jar
        job.setJarByClass(FlowDriver.class);

        //3、关联Mapper和Reducer的jar
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        //4、设置Mapper输出的kv类型
        //Mapper输出的Key为FlowBean,value为Text(手机号)
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        //5、设置最终输出的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //6、设置输入和输出路径
        FileInputFormat.setInputPaths(job,new Path("D:\downloads\hadoop-3.1.0\data\output\output2"));
        FileOutputFormat.setOutputPath(job,new Path("D:\downloads\hadoop-3.1.0\data\output\output6"));

        //7、提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}
1.4 WritableComparable排序案例实 *** (区内排序)

(1)需求

要求每个省份手机号输出的文件中按照总流量内部排序

(2)需求分析

基于前一个需要,增加自定义分区类,分区按照省份手机号设置

(3)分析

(4)增加自定义分区类

  • ProvincePartitioner2
package com.atguigu.mapreduce.PartitionerandwritableComparable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner2 extends Partitioner {
    @Override
    public int getPartition(FlowBean flowbean,Text text, int i){
        String phone = text.toString();
        String prePhone = phone.substring(0,3);
        int partition;
        if ("136".equals(prePhone)){
            partition = 0;
        }else if ("137".equals(prePhone)){
            partition = 1;
        }else if ("138".equals(prePhone)){
            partition = 2;
        }else if ("139".equals(prePhone)){
            partition = 3;
        }else{
            partition = 4;
        }
        return partition;
    }
}
  • FlowBean
package com.atguigu.mapreduce.PartitionerandwritableComparable;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;


public class FlowBean implements WritableComparable{
    private long upFlow;
    private long downFlow;
    private long sumFlow;
    
    public FlowBean(){
    }
    
    public long getUpFlow(){return upFlow;}
    public void setUpFlow(long upFlow){this.upFlow = upFlow;}
    public long getDownFlow(){return downFlow;}
    public void setDownFlow(long downFlow){this.downFlow = downFlow;}
    public long getSumFlow{return sumFlow;}
    public void setSumFlow(){this.sumFlow = this.upFlow+this.dowmFlow;}
    
    @Override
    public void write(DataOutput dataOutput) throws IOException{
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }
    
    @Override
    //按照总流量降序,若总流量相等,按照上行量流量升序
    public int compareTo(FlowBean o){
        if (this.sumFlow > o.sumFlow){
            return -1;
        }else if (this.sumFlow < o.sumFlow){
            return 1;
        }else {
            if (this.upFlow > o.sumFlow){
                return 1;
            }else if (this.upFlow < o.upFlow){
                return -1;
            }else{
                return 0;
            }
        }
    }
}
  • Mapper类
package com.atguigu.mapreduce.PartitionerandwritableComparable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
public class FlowMapper extends Mapper(LongWritable,Text,FlowBean,Text){
    private FlowBean outK = new FlowBean();
    private Text outV = new Text();
    
    @Override
    protected void map(LongWritable key,Text value,Mapper.Context context) throws IOException,InterruptedException{
        //获取一行
        String line = value.toString();
        //切割
        Stingp[] split = line.split("t");
        //封装
        outV.set(split[0]);
        outK.setUpFlow(Long.parseLong(split[1]));
        outK.setDownFlow(Long.parseLong(split[2]));
        outK.setSumFlow();
        //写出
        context.write(outK,outV);
    }
}
  • Reducer类
package com.atguigu.mapreduce.PartitionerandwritableComparable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
public class FlowReducer extends Reducer{
    @Override
    protected void reduce (FlowBean key,Iterable values, Reducer.Context context)throws IOException, InterruptedException{
        for (Text value:values){
            context.write(value,key);
        }
    }
}
  • Driver类
package com.atguigu.mapreduce.PartitionerandwritableComparable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver{
    public static void main(String[] args) throws IOException,InterruptedException,ClassNotFoundException{
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        
        job.setJarByClass(FlowDriver.class);
        
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
        
        job.setPartitionerClass(ProvincePartition2.class);
        job.setNumReduceTasks(5);
        
        FileInputFormat.setInputPaths(job,new Path("D:\downloads\hadoop-3.1.0\data\output\output2"));
        FileOutputFormat.setOutputPath(job,new Path("D:\downloads\hadoop-3.1.0\data\output\output8"));
        
        boolean result = job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5699008.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存