input = torch.randn(1, 3, 8, 9) print(input)
输出:1这个张量,其中是3个通道,8行,9列的数据(从外面往里面数)
tensor([[[[-1.3645, 1.3841, 0.9907, 0.3150, -0.2379, -0.3170, -0.0550, 1.1550, -0.3213], [-0.1501, 1.7308, 1.8265, -1.2117, -0.4732, 0.9322, 0.0305, 4.1326, 0.2020], [ 0.5548, 0.2435, 0.2562, 0.6831, 0.3219, -0.7511, 0.7655, -0.2759, 0.5383], [-0.2694, -0.0915, -0.5576, 0.4837, 0.3901, -1.2744, -0.4583, 0.0563, -0.9379], [-0.7810, -1.4409, 0.5581, 2.0812, -0.7531, 0.6109, -0.3434, 0.5256, 0.7634], [ 0.8005, 1.4034, -1.1069, 0.2152, -1.4043, -0.5372, 1.7089, -0.6352, 1.1726], [-0.2337, 1.5157, -0.9249, -0.7676, -0.5558, 0.5163, 0.7303, 0.2412, 1.3088], [ 0.9068, 0.6180, -0.0107, -0.8221, -0.0535, -0.2342, -0.2962, -0.7616, -0.3691]], [[-1.0224, -0.5053, 0.6644, -1.1911, 0.1454, -0.9308, -0.4813, 0.6776, -1.1368], [ 0.3080, -1.3522, -1.6679, -0.8663, 0.6496, 1.6452, 0.3038, -1.7191, 1.7693], [ 1.1772, -0.4583, -0.3896, -1.5648, -0.4779, -0.5874, -0.9368, -1.0590, -0.7477], [-0.1314, 1.0419, -0.2534, -0.3769, 0.0934, 1.1365, -0.5016, 0.9439, -0.1448], [ 1.0333, -1.9576, -0.8608, 1.2146, 0.9373, -0.4464, 1.0232, -0.3030, 0.5389], [-0.5502, -1.3761, -1.7243, -0.4608, -0.3664, -0.1555, 0.0889, 1.5637, -2.3157], [ 0.0188, 1.1967, 0.6780, -0.3910, 0.0085, 1.9097, 0.5758, 1.4236, -0.5228], [-0.4159, -1.1071, -0.0392, 0.0440, -1.9346, -0.6395, -1.8250, -0.6693, 0.1131]], [[-0.1653, 1.9642, 0.0252, 0.2953, -0.6793, -0.4985, -0.8535, 2.4142, -0.2819], [ 0.6813, 1.8921, -0.5795, 0.9541, -0.4565, 0.3152, 0.4868, -0.1828, 0.3407], [ 1.5413, -1.0101, -0.2164, -0.1154, 0.6204, 1.3020, 0.8447, 0.1371, 0.5912], [-1.6656, -0.5710, -0.1446, 0.1783, -1.4103, -2.0123, -0.0323, -1.9840, -0.4228], [-0.6837, -0.4137, -0.5354, 0.2577, 0.5738, -0.2938, 0.6559, -0.6664, -0.7363], [ 0.9420, 0.7781, -1.2198, -0.8467, -1.0400, -0.3809, -0.8529, -0.1051, 1.1124], [-0.2055, 1.2309, -0.3316, -0.9748, 0.0092, 1.5463, -0.7017, -0.3630, 0.9377], [ 1.4363, 0.3101, -0.2334, -0.3299, 1.7171, 0.2468, -1.0415, 0.5179, -0.2107]]]])
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)