所以,一个自然而然的想法就是在Redis中找到一种对应于Mysql行的数据结构。
Redis中提供了五种基本数据结构,即字符串(string)、列表(list)、哈希(hash)、集合(set)和有序集合(sorted set)。经过调研,发现适合存储行的数据结构有两种,即string和hash。
mysql8以前 的 join 算法只有 nested loop 这一种,在 MySQL8 中推出了一种新的算法 hash join,比 nested loop 更加高效。mysql8中的部分NLJ算法已经取消,hash join 是它的的替代方案。像属于NLJ的BNLJ、SNLJ都会被Hash join替代!不过基于索引的INLJ算法还是存在的,所以实际使用中可以对比下INLJ和Hash Join的查询性能然后做出选择。
个人觉得mysql8这个hash join也只能算是一个锦上添花的功能,顶多是代替了没有加索引时默认走的BNLJ算法,提高了join的性能下限。说白了就是给不懂加索引的mysql新用户提高下join性能。其实也不绝对,不过我有做 INLJ和Hash Join 对比实验,Hash Join 很有可能比需要在内部表建立索引的INLJ算法性能要好!毕竟当INLJ需要回表查的时候性能会大幅度下降,这时候Hash Join绝对值得一试的,当然具体两者之间的选择还请自己实际测试下。
创建user和book表
可以看看下列语句的执行计划,Extra 出现了 Using join buffer (hash join) 说明该语句使用到了hash join。这里还使用了 IGNORE index(index_user_id)禁用索引,不然使用的是INLJ。
那么,使用Hash Join会分为下面2个阶段:
1、build 构建阶段:从参与join的2个表中选一个,选择占空间小的那个表,不是行数少的,这里假设选择了 user 表。对 user表中每行的 join 字段值进行 hash(a.id ) 计算后放入内存中 hash table 的相应位置。所有行都存放到 hash table 之后,构建阶段完成。
溢出到磁盘在构建阶段过程中,如果内存满了,会把表中剩余数据写到磁盘上。不会只写入一个文件,会分成多个块文件。
2、probe 探测阶段:对 book 表中每行中的 join 字段的值进行 hash 计算:hash(b.user_id) 拿着计算结果到内存 hash table 中进行查找匹配,找到一行就发给 client。这样就完成了整个 join *** 作,每个表只扫描一次就可以了,扫描匹配时间也是恒定的,非常高效。
散列连接的内存使用可以使用join_buffer_size系统变量来控制;散列连接使用的内存不能超过这个数量。当散列连接所需的内存超过可用的数量时,MySQL通过使用磁盘上的文件来处理这个问题(溢出到磁盘)。
如果发生这种情况,您应该知道,如果散列连接无法容纳在内存中,并且它创建的文件超过了为open_files_limit设置的数量,则连接可能不会成功。
为避免此类问题,请执行以下任一更改:
1、增加join_buffer_size,以便哈希连接不会溢出到磁盘。
在MySQL 8.0.19及更高版本中, 设置 optimizer_switch 变量值 hash_join=on or hash_join=off 的方式已经失效了
2、增加open_files_limit。若数据量实在太大内存无法申请更大的join_buffer,就只能溢出到磁盘上了。我们可以增加open_files_limit,防止创建的文件超过了为open_files_limit设置的数量而join失败。
必须使用format=tree(8.0.16的新特性)才能查看hash join的执行计划:
创建几张测试表
从MySQL 8.0.18开始,MySQL对每个连接都有一个等连接条件的任何查询都使用散列连接,并且没有可应用于任何连接条件的索引,例如:
在MySQL 8.0.20之前,如果任何一对连接的表没有至少一个等连接条件,就不能使用Hash Join,并且使用了较慢的BNLJ。而 在MySQL 8.0.20和更高版本中,hash join可以用于未包含等值连接条件的查询
甚至是笛卡尔积的join
Semijoin也行
还有 antijoin
1. 概述
我们在考虑MySQL数据库的高可用的架构时,主要要考虑如下几方面:
关于对高可用的分级在这里我们不做详细的讨论,这里只讨论常用高可用方案的优缺点以及高可用方案的选型。
2. 高可用方案
2.1. 主从或主主半同步复制
使用双节点数据库,搭建单向或者双向的半同步复制。在5.7以后的版本中,由于lossless replication、logical多线程复制等一些列新特性的引入,使得MySQL原生半同步复制更加可靠。
常见架构如下:
通常会和proxy、keepalived等第三方软件同时使用,即可以用来监控数据库的 健康 ,又可以执行一系列管理命令。如果主库发生故障,切换到备库后仍然可以继续使用数据库。
优点:
缺点:
2.2. 半同步复制优化
半同步复制机制是可靠的。如果半同步复制一直是生效的,那么便可以认为数据是一致的。但是由于网络波动等一些客观原因,导致半同步复制发生超时而切换为异步复制,那么这时便不能保证数据的一致性。所以尽可能的保证半同步复制,便可提高数据的一致性。
该方案同样使用双节点架构,但是在原有半同复制的基础上做了功能上的优化,使半同步复制的机制变得更加可靠。
可参考的优化方案如下:
半同步复制由于发生超时后,复制断开,当再次建立起复制时,同时建立两条通道,其中一条半同步复制通道从当前位置开始复制,保证从机知道当前主机执行的进度。另外一条异步复制通道开始追补从机落后的数据。当异步复制通道追赶到半同步复制的起始位置时,恢复半同步复制。
搭建两条半同步复制通道,其中连接文件服务器的半同步通道正常情况下不启用,当主从的半同步复制发生网络问题退化后,启动与文件服务器的半同步复制通道。当主从半同步复制恢复后,关闭与文件服务器的半同步复制通道。
优点:
缺点:
2.3. 高可用架构优化
将双节点数据库扩展到多节点数据库,或者多节点数据库集群。可以根据自己的需要选择一主两从、一主多从或者多主多从的集群。
由于半同步复制,存在接收到一个从机的成功应答即认为半同步复制成功的特性,所以多从半同步复制的可靠性要优于单从半同步复制的可靠性。并且多节点同时宕机的几率也要小于单节点宕机的几率,所以多节点架构在一定程度上可以认为高可用性是好于双节点架构。
但是由于数据库数量较多,所以需要数据库管理软件来保证数据库的可维护性。可以选择MMM、MHA或者各个版本的proxy等等。常见方案如下:
MHA Manager会定时探测集群中的master节点,当master出现故障时,它可以自动将最新数据的slave提升为新的master,然后将所有其他的slave重新指向新的master,整个故障转移过程对应用程序完全透明。
MHA Node运行在每台MySQL服务器上,主要作用是切换时处理二进制日志,确保切换尽量少丢数据。
MHA也可以扩展到如下的多节点集群:
优点:
缺点:
Zookeeper使用分布式算法保证集群数据的一致性,使用zookeeper可以有效的保证proxy的高可用性,可以较好的避免网络分区现象的产生。
优点:
缺点:
2.4. 共享存储
共享存储实现了数据库服务器和存储设备的解耦,不同数据库之间的数据同步不再依赖于MySQL的原生复制功能,而是通过磁盘数据同步的手段,来保证数据的一致性。
SAN的概念是允许存储设备和处理器(服务器)之间建立直接的高速网络(与LAN相比)连接,通过这种连接实现数据的集中式存储。常用架构如下:
使用共享存储时,MySQL服务器能够正常挂载文件系统并 *** 作,如果主库发生宕机,备库可以挂载相同的文件系统,保证主库和备库使用相同的数据。
优点:
缺点:
DRBD是一种基于软件、基于网络的块复制存储解决方案,主要用于对服务器之间的磁盘、分区、逻辑卷等进行数据镜像,当用户将数据写入本地磁盘时,还会将数据发送到网络中另一台主机的磁盘上,这样的本地主机(主节点)与远程主机(备节点)的数据就可以保证实时同步。常用架构如下:
当本地主机出现问题,远程主机上还保留着一份相同的数据,可以继续使用,保证了数据的安全。
DRBD是linux内核模块实现的快级别的同步复制技术,可以与SAN达到相同的共享存储效果。
优点:
缺点:
2.5. 分布式协议
分布式协议可以很好解决数据一致性问题。比较常见的方案如下:
MySQL cluster是官方集群的部署方案,通过使用NDB存储引擎实时备份冗余数据,实现数据库的高可用性和数据一致性。
优点:
缺点:
基于Galera的MySQL高可用集群, 是多主数据同步的MySQL集群解决方案,使用简单,没有单点故障,可用性高。常见架构如下:
优点:
缺点:
Paxos 算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。这个算法被认为是同类算法中最有效的。Paxos与MySQL相结合可以实现在分布式的MySQL数据的强一致性。常见架构如下:
优点:
缺点:
3. 总结
随着人们对数据一致性的要求不断的提高,越来越多的方法被尝试用来解决分布式数据一致性的问题,如MySQL自身的优化、MySQL集群架构的优化、Paxos、Raft、2PC算法的引入等等。
而使用分布式算法用来解决MySQL数据库数据一致性的问题的方法,也越来越被人们所接受,一系列成熟的产品如PhxSQL、MariaDB Galera Cluster、Percona XtraDB Cluster等越来越多的被大规模使用。
随着官方MySQL Group Replication的GA,使用分布式协议来解决数据一致性问题已经成为了主流的方向。期望越来越多优秀的解决方案被提出,MySQL高可用问题可以被更好的解决。
分布式解决方案 tidb
多主 多备 master lvs做vip 读写分离中间件
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)