MySql中Sql的执行过程

MySql中Sql的执行过程,第1张

如果查询缓存没有命中,那么SQL请求会进入分析器,分析器是用来分辨SQL语句的执行目的,其执行过程大致分为两步:

表1 语法分析关键字然后再通过语法规则解析,判断输入的SQL 语句是否满足MySQL语法,并且生成图5的语法树。由SQL语句生成的四个单词中,识别出两个关键字,分别是select 和from。根据MySQL的语法Select 和 from之间对应的是fields 字段,下面应该挂接username;在from后面跟随的是Tables字段,其下挂接的是userinfo。

优化器的作用是对SQL进行优化,生成最有的执行方案。如图6所示,前面提到的SQL解析器通过语法分析和语法规则生成了SQL语法树。这个语法树作为优化器的输入,而优化器(黄色的部分)包含了逻辑变换和代价优化两部分的内容。在优化完成以后会生成SQL执行计划作为整个优化过程的输出,交给执行器在存储引擎上执行。

所处的位置如上图所示,这节的重点在优化器中的逻辑变换和代价优化上。

逻辑变换也就是在关系代数基础上进行变换,其目的是为了化简,同时保证SQL变化前后的结果一致,也就是逻辑变化并不会带来结果集的变化。其主要包括以下几个方面:

这样讲概念或许有些抽象,通过图7 来看看逻辑变化如何在SQL中执行的吧。

如图7所示,从上往下共有4个步骤:

1. 针对存在的SQL语句,首先通过“否定消除”,去掉条件判断中的“NOT”。语句由原来的“or”转换成“and”,并且大于小于符号进行变号。蓝色部分为修改前的SQL,红色是修改以后的SQL。2. 等值传递,这一步很好理解分别降”t2.a=9” 和”t2.b=5”分别替换掉SQL中对应的值。3. 接下来就是常量表达式计算,将“5+7”计算得到“12”。4. 最后是常量表达式计算后的化简,将”9<=10”化简为”true”带入到最终的SQL表达式中完成优化。

代价优化是用来确定每个表,根据条件是否应用索引,应用哪个索引和确定多表连接的顺序等问题。为了完成代价优化,需要找到一个代价最小的方案。因此,优化器是通过基于代价的计算方法来决定如何执行查询的(Cost-based Optimization)。简化的过程如下:

这里将配置 *** 作的代价分为MySQL 服务层和MySQL 引擎层,MySQL 服务层主要是定义CPU的代价,而MySQL 引擎层主要定义IO代价。MySQL 5.7 引入了两个系统表mysql.server_cost和mysql.engine_cost来分别配置这两个层的代价。如下:MySQL 服务层代价保存在表server_cost中,其具体内容如下:

由上可以看出创建临时表的代价是很高的,尤其是内部的myisam或innodb临时表。MySQL 引擎层代价保存在表engine_cost中,其具体内容如下:

目前io_block_read_cost和memory_block_read_cost默认值均为1,实际生产中建议酌情调大memory_block_read_cost,特别是对普通硬盘的场景。MySQL会根据SQL查询生成的查询计划中对应的 *** 作从上面两张代价表中查找对应的代价值,并且进行累加形成最终执行SQL计划的代价。再将多种可能的执行计划进行比较,选取最小代价的计划执行。

当分析器生成查询计划,并且经过优化器以后,就到了执行器。执行器会选择执行计划开始执行,但在执行之前会校验请求用户是否拥有查询的权限,如果没有权限,就会返回错误信息,否则将会去调用MySQL引擎层的接口,执行对应的SQL语句并且返回结果。例如SQL:“SELECT * FROM userinfo WHERE username = 'Tom'“假设 “username“ 字段没有设置索引,就会调用存储引擎从第一条开始查,如果碰到了用户名字是” Tom“, 就将结果集返回,没有查找到就查看下一行,重复上一步的 *** 作,直到读完整个表或者找到对应的记录。需要注意SQL语句的执行顺序并不是按照书写顺序来的,顺序的定义会在分析器中做好,一般是按照如下顺序:

如果命中的记录比较多,应用会从MySql Server一批批获取数据

本文从MySQL中SQL语句的执行过程作为切入点,首先介绍了查询请求的执行流程,其中将MySQL的处理分为MySQL Server层和MySQL存储引擎层。通过介绍SQL语句的流转,引出了后面要介绍的5大组件,他们分别是:连接器、查询缓存、分析器、优化器、执行器。后面的内容中对每个组件进行了详细的介绍。连接器,负责身份认证和权限鉴别;查询缓存,将查询的结果集进行缓存,提高查询效率;分析器,对SQL语句执行语法分析和语法规则,生成语法树和执行计划;优化器,包括逻辑变换和代价优化;执行器,在检查用户权限以后对数据进行逐条查询,整个过程遵守SQL语句的执行顺序。

首先介绍下 pt-stalk,它是 Percona-Toolkit 工具包中的一个工具,说起 PT 工具包大家都不陌生,平时常用的 pt-query-digest、 pt-online-schema-change 等工具都是出自于这个工具包,这里就不多介绍了。

pt-stalk 的主要功能是在出现问题时收集 OS 及 MySQL 的诊断信息,这其中包括:

1. OS 层面的 CPU、IO、内存、磁盘、网络等信息;

2. MySQL 层面的行锁等待、会话连接、主从复制,状态参数等信息。

而且 pt-stalk 是一个 Shell脚本,对于我这种看不懂 perl 的人来说比较友好,脚本里面的监控逻辑与监控命令也可以拿来参考,用于构建自己的监控体系。

三、使用

接着我们来看下如何使用这个工具。

pt-stalk 通常以后台服务形式监控 MySQL 并等待触发条件,当触发条件时收集相关诊断数据。

触发条件相关的参数有以下几个:

function:

∘ 默认为 status,代表监控 SHOW GLOBAL STATUS 的输出;

∘ 也可以设置为 processlist,代表监控 show processlist 的输出;

variable:

∘ 默认为 Threads_running,代表 监控参数,根据上述监控输出指定具体的监控项;

threshold:

∘ 默认为 25,代表 监控阈值,监控参数超过阈值,则满足触发条件;

∘ 监控参数的值非数字时,需要配合 match 参数一起使用,如 processlist 的 state 列;

cycles:

∘ 默认为 5,表示连续观察到五次满足触发条件时,才触发收集;

连接参数:host、password、port、socket。

其他一些重要参数:

iterations:该参数指定 pt-stalk 在触发收集几次后退出,默认会一直运行。

run-time:触发收集后,该参数指定收集多长时间的数据,默认 30 秒。

sleep:该参数指定在触发收集后,sleep 多久后继续监控,默认 300 秒。

interval:指定状态参数的检查频率,判断是否需要触发收集,默认 1 秒。

dest:监控数据存放路径,默认为 /var/lib/pt-stalk。

retention-time :监控数据保留时长,默认 30 天。

daemonize:以后台服务运行,默认不开启。

log:后台运行日志,默认为 /var/log/pt-stalk.log。

collect:触发发生时收集诊断数据,默认开启。

∘ collect-gdb:收集 GDB 堆栈跟踪,需要 gdb 工具。

∘ collect-strace:收集跟踪数据,需要 strace 工具。

∘ collect-tcpdump:收集 tcpdump 数据,需要 tcpdump 工具。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/6139251.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-16
下一篇 2023-03-16

发表评论

登录后才能评论

评论列表(0条)

保存