在开始演示之前,我们先介绍下两个概念。
概念一,数据的可选择性基数,也就是常说的cardinality值。
查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。
比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。
那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。
概念二,关于HINT的使用。
这里我来说下HINT是什么,在什么时候用。
HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。
比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?
来看下具体演示
譬如,以下两条SQL,
A:
select * from t1 where f1 = 20B:
select * from t1 where f1 = 30如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。
这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。
那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。
示例表结构:
mysql>desc t1+------------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+------------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || rank1 | int(11) | YES | MUL | NULL | || rank2 | int(11) | YES | MUL | NULL | || log_time | datetime | YES | MUL | NULL | || prefix_uid | varchar(100) | YES | | NULL | || desc1 | text | YES | | NULL | || rank3 | int(11) | YES | MUL | NULL | |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)表记录数:
mysql>select count(*) from t1+----------+| count(*) |+----------+| 32768 |+----------+1 row in set (0.01 sec)这里我们两条经典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2SQL D:
select * from t1 where rank1 =100 and rank2 =100 and rank3 =100表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。
那我们来看SQL C的查询计划。
显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。
mysql>explain format=json select * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "3243.65" }, "table": { "table_name": "t1", "access_type": "ALL", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "rows_examined_per_scan": 32034, "rows_produced_per_join": 115, "filtered": "0.36", "cost_info": { "read_cost": "3232.07", "eval_cost": "11.58", "prefix_cost": "3243.65", "data_read_per_join": "49K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" } }}1 row in set, 1 warning (0.00 sec)我们加上hint给相同的查询,再次看看查询计划。
这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。
mysql>explain format=json select /*+ index_merge(t1) */ * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "441.09" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "union(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1103, "rows_produced_per_join": 1103, "filtered": "100.00", "cost_info": { "read_cost": "330.79", "eval_cost": "110.30", "prefix_cost": "441.09", "data_read_per_join": "473K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" } }}1 row in set, 1 warning (0.00 sec)我们再看下SQL D的计划:
不加HINT,
mysql>explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "534.34" }, "table": { "table_name": "t1", "access_type": "ref", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "idx_rank1", "used_key_parts": [ "rank1" ], "key_length": "5", "ref": [ "const" ], "rows_examined_per_scan": 555, "rows_produced_per_join": 0, "filtered": "0.07", "cost_info": { "read_cost": "478.84", "eval_cost": "0.04", "prefix_cost": "534.34", "data_read_per_join": "176" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))" } }}1 row in set, 1 warning (0.00 sec)加了HINT,
mysql>explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "5.23" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "intersect(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": { "read_cost": "5.13", "eval_cost": "0.10", "prefix_cost": "5.23", "data_read_per_join": "440" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))" } }}1 row in set, 1 warning (0.00 sec)对比下以上两个,加了HINT的比不加HINT的cost小了100倍。
总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。
MySQL从8.0开始支持窗口函数。也就是分析函数
序号函数:ROW_NUMBER()、RANK()、DENSE_RANK()
分布函数:PERCENT_RANK()、CUME_DIST()
前后函数:LAG()、LEAD()
头尾函数:FIRST_VALUE()、LAST_VALUE()
其它函数:NTH_VALUE()、NTILE()
例子:
首先有一个表字段:id score(分数)user_id
1.序号函数:ROW_NUMBER()、RANK()、DENSE_RANK()
用途:显示分区中的当前行号,对查询结果进行排序.
ROW_NUMBER():顺序排序——1、2、3 RANK():并列排序,跳过重复序号——1、1、3 DENSE_RANK():并列排序,不跳过重复序号——1、1、2
执行sql:
2.分布函数:PERCENT_RANK()、CUME_DIST()
用途:每行按照公式(rank-1) / (rows-1)进行计算。其中,rank为RANK()函数产生的序号,rows为当前窗口的记录总行数
3.前后函数:LAG()、LEAD()
LAG和LEAD分析函数可以在同一次查询中取出同一字段的前N行的数据(LAG)和后N行的数据(LEAD)作为独立的列
在实际应用当中,若要用到取今天和昨天的某字段差值时,LAG和LEAD函数的应用就显得尤为重要。当然,这种 *** 作可以用表的自连接实现,但是LAG和LEAD与LEFT JOIN、RIGHT JOIN等自连接相比,效率更高,SQL更简洁。下面我就对这两个函数做一个简单的介绍。
函数语法如下:
lag(exp_str,offset,defval) OVER(PARTITION BY …ORDER BY …)
lead(exp_str,offset,defval) OVER(PARTITION BY …ORDER BY …)
参数说明:
exp_str是字段名
offset是偏移量,即是上1个或上N个的值,假设当前行在表中排在第10行,则offset 为3,则表示我们所要找的数据行就是表中的第7行(即10-3=7)。
defval默认值,当两个函数取上N/下N个值,当在表中从当前行位置向前数N行已经超出了表的范围时,LAG()函数将defval这个参数值作为函数的返回值,若没有指定默认值,则返回NULL,那么在数学运算中,总要给一个默认值才不会出错。
执行sql:
以第一行为例:4.0上一条记录(lag)是没有的,所有有赋予默认值0,4.0的下一条记录(lead)还是4.0,可以通过偏移量调整上下N条记录
注意:这里是序号的上一条或下一条
4.头尾函数:FIRST_VALUE(expr)、LAST_VALUE(expr)
用途:返回第一个(FIRST_VALUE(expr))或最后一个(LAST_VALUE(expr))expr的值
执行sql:
FIRST_VALUE()的结果容易理解,直接在结果的所有行记录中输出同一个满足条件的首个记录;
LAST_VALUE()默认统计范围是 rows between unbounded preceding and current row,也就是取当前行数据与当前行之前的数据的比较。
那么如果我们直接在每行数据中显示最后的那个数据,需在order by 条件的后面加上语句: rows between unbounded preceding and unbounded following , 也就是前面无界和后面无界之间的行比较。
加上语句,执行sql:
结果:
简单理解就是,取最大的还是最小的结合ORDER BY使用,或者取第一个还是或者最后一个
参考: https://baijiahao.baidu.com/s?id=1728966619393719484&wfr=spider&for=pc
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)