已亲测:最优化算法的核心思想与程序例子

已亲测:最优化算法的核心思想与程序例子,第1张

蒙特卡洛: 大量随机抽样下的比对,最后结果就是在当前抽样数量下筛选出的一定是最想要的那个结果。举例:假如篮子里有1000个苹果(你定的测试集),让你 每次闭着眼睛找一个最大的,可以不限制挑选次数;于是,你可以闭着眼随机拿了一个,然后再随机拿一个与第一个比,留下大的;再随机拿一个,与前次留下的比较,又 可以留下大的;循环往复这样:拿的次数越多,挑出最大苹果的可能性也就越大!但除非你把1000个苹果都挑一遍,否则你无法肯定最终挑出来的就是最大的一个。如果有 10000个苹果的话,继续如此说不定就能找到更大的!

模拟退火 :“渐渐”清楚自己的目标是什么!并不断朝“越发”明确的目标迈进,“越来越”不被诱惑干扰。举例:为了找出地球上最高的山,一只兔子在开始并没有 合适的策略,它随机地跳了很长时间!在这期间,它可能走向高处,也可能踏入平地或沟壑。但是,随着时间的流逝,它“渐渐清醒”! 并“直直地”朝着最高的方向跳去, 最后就到达了珠穆朗玛峰。

粒子群 :信息的社会共享,以一个团队的形式来搜索!团队里成员信息共享,共同进步;避免一个人工作时出现目光短浅,没有全局意识。举例:就像下围棋,只 专注于一个角落的战斗不一定能获取最终的胜利,只有放眼全局,把所有己方的棋子都盘活,相互间彼此帮助,才能获得最后胜利。

蚁群 :和粒子群算法有些相似,都是靠团队的力量共同去找目标!蚁群算法中特殊的是它的"信息素"挥发! 这个效果是其他算法中没有的!

以上所有的最优化算法都很难做到极高的精度,这是必然的: 一是 因为全局搜索已经耗费了大量的时间和资源,再过分强调精度有些不经济; 二是 因为全局搜索得到的最值可以理解为一精确最值的一个准确范围!即进入这个范围再进行精确的搜索一定可以找到精确最值;但是,全局最优的核心是随机/概率,当进入一个准确范围时,这个范围肯定是很小的,如果之后精确搜索还用全局搜索的概率参数(此时来说波动范围太大了),很可能又会跳出这个好不容易找到的精确区域!

因此: 全局最优算法与局部最优算法是要相结合的 !全局最优算法负责划定最值所在的一个精确的、较小的范围内,即告诉局部最优算法在这个范围内继续找一定可以找到精确解;局部最优算法按照较小的步长、较高的精度继续搜索精确最值。

常用全局最优算法:蒙特卡洛(MC)、模拟退火(SA)、粒子群(PSO)、蚁群(AG);

常用局部最优算法:梯度下降法、牛顿法、阻尼牛顿法、共轭梯度法;

推荐搭配1:蒙特卡洛

推荐搭配2:粒子群 + 梯度下降

推荐搭配3:蚁群 + 梯度下降 + 重检机制

以上提到算法的 “程序 + 详细使用说明” 参考以下地址:

优化算法

这个例子其实是当初数模比赛时用来完成碎片拼接的,但其所用到原理还是求解最短路径的原理。但这里的最短路径和数据结构中最短路径有一定的区别。在数据结构中,对于最短路径的求解常用的一般有Dijkstra算法与Floyd算法,但对于要求出一条经过所有的点的并且要求路径最短,这些算法还是有一定的局限性的。而蚁群算法则很好地满足了这些条件。话说回来,很想吐槽一下网络流传的一些蚁群算法的例子,当初学习这个时候,身边也没有相关的书籍,只好到网上找例子。网上关于这个算法源代码的常见的有2个版本,都是出自博客,但是在例子都代码是不完整的,缺失了一部分,但就是这样的例子,居然流传甚广,我很好奇那些转载这些源码的人是否真的有去学习过这些,去调试过。当然,我下面的例子也是无法直接编译通过的,因为涉及到图像读取处理等方面的东西,所以就只贴算法代码部分。但是对于这个问题蚁群算法有一个比较大的缺点,就是收敛很慢,不过对于数量小的路径,效果还是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%参数解释:%nt 路径所经过的点的个数;%nc_max 迭代的次数;%m 蚂蚁的个数;%st 起点序号;%sd 终点序号;%Alpha 信息素系数;�ta 启发因子系数;%Rho 蒸发系数;% Q 信息量;%gethead getend 是用来求距离矩阵的,可根据实际情况修改

% nt = 209;%碎片个数full = zeros(nt,nt);tic;%初始化距离矩阵for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1/full;%启发因子,取距离的倒数% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩阵% tabu = zeros(nt,nt);%禁忌矩阵,取蚂蚁数量和碎片数量一致,以减少迭代次数nc =1;%初始化迭代次数;rbest=zeros(nc_max,nt);%各代最佳路线rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路线的长度pathlen = 0;%临时记录每代最佳路线长度stime = 1;%记录代数进度for i = 1:nc_max % 代数循环 delta_tau=zeros(nt,nt);%初始化改变量 stime for t = 1:m % 对蚂蚁群体的循环, tabu=zeros(1,nt);%禁忌向量,标记已访问的碎片,初试值设为0,访问之后则变为1; viseted = zeros(1,nt);%记录已访问的元素的位置 tabu(st) = 1;%st为起点,在此表示为碎片矩阵的编号,因为已经将蚁群放在起点,故也应将禁忌向量和位置向量的状态进行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %记录了还没访问的编号 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %获取尚未访问的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)(eta(visited(end),ju(3))^Beta)% visited(end) %计算选择的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)(eta(visited(vp),wv(k))^Beta);%下一张碎片的选择概率计算,p =(信息素^信息素系数)(启发因子^启发因子系数) end pp=pp/(sum(pp));%归一化 pcum =cumsum(pp); psl = find(pcum >= rand);%轮盘赌法 to_visit= wv(psl(1)) ;%完成选点 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已访问碎片个数变化 vp =vp+1; end %路径变化信息 %对单个蚂蚁的路径进行统计 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞记录每个蚂蚁的路径,即碎片顺序;% msum(t) = sum1; %信息素变化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho)tau+delta_tau; %完成信息素的更新,找出现有的最新的最佳路径,即信息素最多的路径; stime =stime +1;end toc;

原创比遗传算法性能更好:蚁群算法TSP(旅行商问题)通用matlab程序

声明:本程序为本人原创,在研学论坛首次发表,本人保留一切权利,仅供学习交流用,如转载请注明原作者!

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%=========================================================================

%% ACATSPm

%% Ant Colony Algorithm for Traveling Salesman Problem

%% ChengAihua,PLA Information Engineering University,ZhengZhou,China

%% Email:aihuacheng@gmailcom

%% All rights reserved

%%-------------------------------------------------------------------------

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(C,1);%n表示问题的规模(城市个数)

D=zeros(n,n);%D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^05;

else

D(i,j)=eps;

end

D(j,i)=D(i,j);

end

end

Eta=1/D;%Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n);%Tau为信息素矩阵

Tabu=zeros(m,n);%存储并记录路径的生成

NC=1;%迭代计数器

R_best=zeros(NC_max,n);%各代最佳路线

L_best=infones(NC_max,1);%各代最佳路线的长度

L_ave=zeros(NC_max,1);%各代路线的平均长度

while NC<=NC_max%停止条件之一:达到最大迭代次数

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[];

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n

for i=1:m

visited=Tabu(i,1:(j-1));%已访问的城市

J=zeros(1,(n-j+1));%待访问的城市

P=J;%待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0

J(Jc)=k;

Jc=Jc+1;

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)(Eta(visited(end),J(k))^Beta);

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);

Select=find(Pcum>=rand);

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));

end

L(i)=L(i)+D(R(1),R(n));

end

L_best(NC)=min(L);

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:);

L_ave(NC)=mean(L);

NC=NC+1

%%第五步:更新信息素

Delta_Tau=zeros(n,n);

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

end

Tau=(1-Rho)Tau+Delta_Tau;

%%第六步:禁忌表清零

Tabu=zeros(m,n);

end

%%第七步:输出结果

Pos=find(L_best==min(L_best));

Shortest_Route=R_best(Pos(1),:)

Shortest_Length=L_best(Pos(1))

subplot(1,2,1)

DrawRoute(C,Shortest_Route)

subplot(1,2,2)

plot(L_best)

hold on

plot(L_ave)

function DrawRoute(C,R)

%%=========================================================================

%% DrawRoutem

%% 画路线图的子函数

%%-------------------------------------------------------------------------

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])

hold on

end

设置初始参数如下:

m=31;Alpha=1;Beta=5;Rho=01;NC_max=200;Q=100;

31城市坐标为:

1304 2312

3639 1315

4177 2244

3712 1399

3488 1535

3326 1556

3238 1229

4196 1004

4312 790

4386 570

3007 1970

2562 1756

2788 1491

2381 1676

1332 695

3715 1678

3918 2179

4061 2370

3780 2212

3676 2578

4029 2838

4263 2931

3429 1908

3507 2367

3394 2643

3439 3201

2935 3240

3140 3550

2545 2357

2778 2826

2370 2975

运行后得到15602的巡游路径,

以上就是关于已亲测:最优化算法的核心思想与程序例子全部的内容,包括:已亲测:最优化算法的核心思想与程序例子、求教:蚁群算法选择最短路径问题、遗传算法和蚁群算法在求解TSP问题上的对比分析等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10218740.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存