gpu服务器有哪些应用场景?

gpu服务器有哪些应用场景?,第1张

GPU服务器的主要应用场景有海量计算处理,超强的计算功能可应用与海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等,可能原本需要几天才能完成的数据量,用GPU服务器在几个小时就完成了;GPU服务器还可以作为深度学习训练平台,可直接加速计算服务,亦可直接与外界连接通信等等。思腾合力在GPU服务器的型号方面还是有很多选择的,有自主研发的品牌也有英伟达的,在选择方面还是比较多的,应用的场景也十分广泛。

据IDC数据显示,过去一年,中国边缘计算服务器市场爆发式增长了2663%,这意味着当前中国企业的IT架构正在迈向一个云网融合、混合多云、边缘计算等多架构并存的全新阶段。为帮助企业更好的应对数字化转型下的架构变革,7月18日联想正式发布全新边缘服务器ThinkServer SE550 V2,这款双路2U边缘服务器具备强大的计算性能和丰富的扩展能力,能够为企业边缘端应用和场景提供专业计算平台支持。

联想ISG中国战略及运营高级总监、智能边缘中国事业部总经理杨春表示:“边缘计算将在企业未来的数字化转型中发挥关键作用。联想正在将边缘计算业务上升到公司战略高度,致力于成为行业领先的边缘计算方案提供商。联想ThinkServer SE550 V2边缘服务器凭借强大的性能、丰富的扩展能力和稳定的可靠性,能够释放边缘端的强大算力,点燃边缘人工智能、边缘网络、边缘云、边缘加速等典型应用的智慧场景。”

近年来随着人工智能、5G、物联网等信息技术的不断发展,海量的数据被逐渐释放,仅依靠传统集中式的云计算架构难以解决企业低延时、本地化、高频次的计算需求。而边缘计算技术由于融合了边缘侧计算、存储、网络能力,能够在数据产生端就近提供边缘智能服务,从而满足用户和行业数字化所面临的敏捷链接、实时业务、智能应用、数据安全等关键需求,因此受到了众多企业的青睐。据Gartner预测,到2025年,约75%的企业数据将不通过数据中心,而是直接在边缘进行计算。

目前,我国智能制造、智慧零售、智慧园区、智慧城市等行业的智能化转型正在加速,这些复杂的场景对边缘计算设备的性能要求极高。比如在智能制造领域,利用边缘服务器作为载体,将机器视觉运用到产品质检过程中,智能实时处理海量数据,能够实现生产线的管理优化。作为计算平台的核心硬件之一,能够应对复杂多样的业务需求,面向特定场景的边缘服务器应运而生。

联想ThinkServer SE550 V2边缘服务器不仅满足运营商OTII边缘服务器的众多标准,配合联想“端-边-云-网-智”的全要素能力,还能为用户提供从软件到硬件的整套解决方案。联想ThinkServer SE550 V2支持最多两颗Intel Xeon 第三代可扩展处理器,每个处理器数量最多32核,并且支持NVIDIA专业GPU,为边缘人工智能的场景应用提供强大算力支持。此外,联想ThinkServer SE550 V2也可像普通2U机架式服务器一样,为用户的虚拟化、数据库、云计算和AI等应用场景提供强大的算力支撑。

联想ThinkServer SE550 V2实现了便携性与扩展性的平衡。联想ThinkServer SE550 V2采用短机箱设计,相比传统机架式服务器能够节省部署空间。同时,联想ThinkServer SE550 V2支持16个DDR4内存插槽,内存频率最高可支持到3200 MHz,整机内存最大可扩展到1TB。在硬盘容量方面,联想ThinkServer SE550 V2最多支持八个25英寸热插拔硬盘,最多两个内置M2高速固态硬盘,配合Lenovo Anybay技术,可在同一驱动器托架内灵活混搭SAS/SATA/NVMe硬盘,实现灵活扩展。

相比云端服务器,边缘服务器需要深入各类行业使用场景,应对不同的温度、工业环境等需求对产品进行设计和优化。基于联想在服务器领域多年的技术积累和品质追求,联想ThinkServer SE550 V2对可能存在的极限场景进行了针对性提升——通常产品工作温度范围为常温,而联想ThinkServer SE550 V2支持宽温使用,能够在45 高温中保持长期高效运行。同时,联想ThinkServer SE550 V2还通过了地震烈度测试,能够保证在极端情况下的数据安全和使用稳定。

边缘计算是联想重点聚焦和投入的核心技术领域之一,不久前联想正式成立智能边缘事业部,基于对产业趋势的洞察和用户需求的研究,联想正式发布智能边缘计算品牌“慧天”。同时,联想将充分整合其在边缘计算领域的硬件、软件、方案及服务,致力于成为业界领先的全栈式智能化边缘计算方案提供商。目前,联想已为智能制造、智慧城市、智慧园区、智慧教育、智慧医疗、智慧金融等领域的众多企业提供智能边缘计算服务。

在“ 科技 赋能中国智能化转型”的愿景下,联想中国区基础设施业务群将继续围绕“1248”战略全景,在边缘计算领域持续攻坚,打磨成熟的边缘计算解决方案,为千行百业客户提供绿色、敏捷、高效的“新IT”智能架构,助力中国企业迈向数字化转型新阶段。

按照常规的需求分析理论,需求可分为功能需求和肺功能需求,其中非功能需求又可分为质量和约束。一般来说,对于功能需求,我们仔细一点,多和用户沟通的话,是比较好分析的。而对于非功能需求,我们有时会觉得心有余而力不足,或者说不知如何是好。在很多情况下,项目组干脆就不去分析非功能需求了,所有的这些非功能需求只是停留在项目经理或者某些成员的脑子里。这种情况存在着非常大的隐患,如果产品发布了,我们没有对这些非功能需求进行测试和验证,导致我们的产品中存在许多定时炸d。这些炸d在某些场景下就有可能爆炸,炸了用户,也可能炸了自己。对于以上问题,业界有一定分析工具可以有效的解决该问题,即“目标-场景-对策”分析法。举例来说:目标场景决策性能客户端频繁访问页面,WEB服务器负荷大代理服务器客户端大量访问后台服务器程序频繁访问IO,磁盘压力大数据库拆分以上举了我们对非功能需求中的“性能”大类进行了分析,比如对月客户端大量访问后台的场景,我们采取了服务器的应对策略。这种分析方法和原有的“存而不论”的方法相比,有以下优点:1、它在流程上就规定了分析人员必须对产品中的非功能需求进行分析;2、它针对非功能需求的目标进行了归类整理;3、对于每个目标中可能发生的场景进行了梳理;4、最后就是比较关键的一条就是,对于每种场景,我们都仔细思考了针对性的决策分析,这些决策为后续的设计起到了指导作用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10613721.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存