什么是AMD,它跟ARM有什么关系

什么是AMD,它跟ARM有什么关系,第1张

美国超微半导体公司(Advanced Micro Devices )简称 AMD 是一家做GPU 和 CPU的公司。
ARM公司既不生产芯片也不销售芯片,它只出售芯片技术授权。
AMD和ARM只是在服务器用CPU上有过合作, 其他关系 没啥。

先讲讲英特尔吧。
•1968年~1972年
1968年
7月18日,罗伯特•诺伊斯和戈登•摩尔离开仙童半导体,投资创建诺伊斯-摩尔电子公司。后来公司支付15万美元从INTLECO公司买到了“INTEL”名字的使用权,并更名为英特尔公司。
诺伊斯和摩尔各出资245万美元,风险资本家阿瑟•罗克出资1万美元并募集了250万美元投资。
罗克出任公司董事会主席,罗伯特•诺伊斯任CEO,戈登•摩尔出任执行副总裁,公司在加州山景城正式运营。
1969年
英特尔发布了第一款产品3010 Schottky双极随机存储器(RAM)。
英特尔发布世界上首款金属氧化物半导体(MOS)静态随机存储器(static RAM)1101。
英特尔从汉密尔顿电子公司(Hamilton Electric)接到成立以来的第一份定单。
英特尔在瑞士日内瓦建立第一个美国本土之外的销售办公室。
1970年
英特尔发布1103动态随机存储器(DRAM)。
英特尔年收入突破400万美元。
英特尔在加州圣克拉拉城购买了26英亩土地,建造第一个厂房。
1971年
英特尔在在11月15日的《电子新闻》上刊登广告宣布“一个集成电子新纪元的到来”,第一款4位微处理器4004面世,时钟频率为108KHz,内含2300个晶体管,从此揭开了CPU发展的序幕。
英特尔发布世界上首款可擦写编程只读存储器(EPROM)。
英特尔以每股235美元公开上市,筹集了680万美元。
英特尔单月销售额首次突破100万美元。
英特尔公司第一个工厂正式启用。
1972年
英特尔公司第一个非美国本土的工厂启用,位于马来西亚槟榔屿。
英特尔公司8位微处理器8008,时钟频率为200KHz。
英特尔购并Microma公司,进入新兴的数字手表市场。
英特尔启用3英寸硅晶片生产线生产计算机芯片。
•1973年~1977年
1973年
英特尔第一家自有晶片厂正式启用,地点在加州利弗莫尔市。
英特尔单月销售额突破300万美元。
基尔代尔开发了PC史上革命性的微处理程序设计语言PL/M。
1974年
英特尔发布首款真正的通用微处理器Intel 8080,时钟频率为2MHz。
英特尔第一个国外设计中心启用,地点在以色列海法。
英特尔发布容量4K的动态随机存储器2107。
1975年
8080微处理器被用于Altair8800,这是最早的个人电脑之一。
罗伯特•诺伊斯被任命为英特尔董事会主席,戈登•摩尔成为公司总裁,安迪•格罗夫为执行副总裁。
英特尔推出多总线(MULTIBUS)。
1976年
英特尔发布世界上首款微控制器8748和8048,在单一硅芯片上结合了中央处理器、存储器、外围设备以及输入输出功能。
英特尔发布世界上第一台单板计算机iSBC80/10。
英特尔启用4英寸硅晶片生产线生产芯片。
英特尔发布时钟频率为5MHz的8085微处理器。
英特尔与AMD达成专利交叉使用协议,从而使AMD能够使用Intel的微代码。
1977年
英特尔开始生产磁泡存储器(Magnetic Bubble Memory),这项业务延续了11年之久。
英特尔推出容量16K的2716 EPROM。
英特尔发布首款单芯片多媒体数字信号编解码器(codec)2910,成为电讯业工业标准。
•1978年~1982年
1978年
英特尔推出16位微处理器8086,时钟频率为477MHz。
英特尔员工突破1万名。
英特尔退出数字手表业务,Miceoma品牌卖给了一家瑞士公司,存货则卖给了Timex公司。
1979年
英特尔推出8088微处理器(8060的低价版本),内含29000个晶体管,时钟频率为477MHz。
英特尔首次进入《财富》杂志的500强,位居第486位。
戈登•摩尔出任英特尔董事会主席兼CEO,罗伯特•诺伊斯任副主席,安迪•格罗夫成为总裁兼COO。
罗伯特•诺伊斯被美国总统卡特授予国家科学勋章。
英特尔发布2920信号处理器,这是首款能对模拟型号进行实时数字处理的微处理器。
1980年
英特尔、数字设备公司(DEC)和施乐宣布合作开发以太网,以使不同机器能够通过局域网连接。
英特尔发布8087数字协处理器,把复杂的数字功能从微处理器中剥离,以提高性能。
英特尔发布历史上销售成绩最佳的8051和8751微控制器。
1981年
IBM选择了8088作为IBM PC的微处理器,从此开创了PC时代。
英特尔为加快新产品进入市场,实行了“125%的解决方案”,要求雇员每周自愿增加25%的工作量而没有任何额外补偿。
英特尔发布32位的iAPX 432微处理器,但这款处理器并没有在市场上获得成功。
1982年
英特尔推出80286的微处理器,内含134万个晶体管,PC产业真正开始腾飞。在随后的六年时间里,全球售出大约1500万台基于286微处理器的PC。
IBM宣布以25亿美元收购英特尔12%的股份,以帮助英特尔熬过产业不景气阶段,而后在1984年又以1亿多美元追加收购了5%的股份。1987年,随着产业环境的好转,IBM出售了这些股份。
英特尔发布首款网络控制器82586,从主处理器剥离出网络功能从而提高系统性能。
英特尔的首款16位微控制器8096进入市场。
•1983年~1987年
1983年
英特尔发布CHMOS技术,在推动芯片性能增长的同时减少了能耗。
英特尔年收入达到10亿美元。
英特尔开始用6英寸硅晶片生产线生产芯片。
1984年
IBM发布采用Intel 286处理器的PC-AT,采用开放的系统,奠定了X86系统结构在PC市场的统治地位。
英特尔发布世界上首款CHMOS动态随机存储器,容量为256K。
安迪•格罗夫被《财富》周刊评为“美国十大最严厉的老板”之一。
美国议会通过《半导体芯片保护法案》,允许半导体制造商取得他线路设计的版权,这一法案成为英特尔保护其发展的重要工具。
1985年
英特尔做出痛苦的选择,把公司主营业务从最初的DRAM转向微处理器。
英特尔推出32位的386处理器,内含275万个晶体管。
英特尔推出iPSC/1,进入超级计算机业务。
1986年
美日半导体贸易协定签署,日本对美国半导体制造商开放市场。
美国法院规定微码(植入硅芯片的软件)同样适用美国著作权法。
英特尔发布容量1M的可擦写可编程只读存储器27010、27011和27210。
1987年
安迪•格罗夫被任命为公司总裁兼CEO。
罗伯特•诺伊斯被美国总统罗纳德•里根授予全国技术勋章。
公司推出第二代iPSC/2超级计算机,它基于大量的英特尔386处理器和80387数字协处理器。
•1988年~1992年
1988年
公司发布ETOX(EPROM Tunnel Oxide)技术,进入闪存领域。
罗伯特•诺伊斯成为SEMATECH总裁兼CEO,这是一个旨在保持美国在半导体制造研究领域最前沿地位的企业联盟。
1989年
英特尔推出首款商用处理器i860,内含超过100万个晶体管。
英特尔推出80486微处理器,内含120万个晶体管。
1990年
英特尔的共同创始人罗伯特•诺伊斯因心脏病突发去世。
英特尔发布首款NetPort打印服务器,使打印机能够很便捷的连接到局域网并实现共享。
美国总统乔治•布什(老布什)授予戈登•摩尔全国技术勋章。
克雷格•贝瑞特出任英特尔执行副总裁。
1991年
英特尔正式开展“Intel Inside”品牌推广计划,这一LOGO在后来屡受指控。
英特尔在一个月之内发布了包括EtherExpress配适卡在内23款网络产品。
公司宣布将中止EPROM的开发,转向闪存。
1992年
根据市场研究机构Datequest的信息显示,英特尔已经成为世界第一大半导体供应商。
公司采用8英寸硅晶片生产线生产芯片。
英特尔发布82420芯片组,公司正式进入芯片组领域。
•1993年~1997年
1993年
英特尔推出Pentium(奔腾)处理器(俗称586),集成了310万个晶体管。
克雷格•贝瑞特被任命为公司执行副总裁兼COO,戈登•摩尔留任公司董事会主席,安迪•格罗夫仍担任总裁兼CEO。
英特尔被《金融世界》(Financial World)杂志评为世界第三最有价值品牌。
PCMCIA标准面世,使便携式电脑能够很容易的加入调制解调器、声卡、网络配适器等设备,英特尔是该项标准的创建者之一。
1994年
公司发布首款LANDesk网络管理软件产品,能够实现软件区分、病毒防护、远程诊断以及其它计算机网络功能。
奔腾处理器发现浮点缺陷,英特尔耗资47亿美元更换所有芯片以及改进芯片设计。
英特尔协助定义即插即用标准,使PC添加外围设备更加简便。
1995年
英特尔推出专为服务器和工作站设计的Pentimu Pro处理器,内含550万个的晶体管。
英特尔发布82430FX芯片组。
英特尔扩张其网络设备产品线,推出集线器、交换机、路由器和其他网络产品。
1996年
英特尔推出采用了MMX(多媒体增强指令集)技术的Pentium处理器。
1997年
英特尔推出Pentium Ⅱ处理器,集成了750万个晶体管。
英特尔发布StrataFlash存储器,实现在单个存储单元中存储多位数据,大幅增加闪存容量。
安迪•格罗夫被《时代周刊》评为年度风云人物。
克雷格•贝瑞特成为公司总裁,安迪•格罗夫成为董事会主席,戈登摩尔则退任公司名誉主席。
•1998年~2002年
1998年
英特尔推出Celeron(赛扬)处理器。
英特尔推出Pentium Ⅱ Xeon(至强)处理器。
英特尔发布首款基于StrongARM结构体系的高性能、低能耗处理器,用于手持计算和通讯设备。
1999年
英特尔发布Pentium Ⅲ处理器,内含900万个晶体管。
英特尔发布Pentium Ⅲ Xeon处理器。
英特尔进一步扩展网络产品线,推出IXP1200网络处理器和相关产品。
2000年
无线应用成为发展重点,英特尔发布Xscale微架构体系和数款无线网卡。
英特尔发布Pentium 4处理器,集成了4200万个晶体管。
2001年
英特尔的共同创始人戈登•摩尔正式退休。
英特尔推出用于工作站和服务器的首款64位Itanium(安腾)处理器。
英特尔发布Xeon处理器。
英特尔制造出世界上最小最快的晶体管,宽仅15毫微米(1毫微米为十亿分之一米)。
2002年
英特尔开始在300毫米(12英寸)晶片上采用013微米技术制造芯片产品。
保罗•欧德宁成为公司总裁兼COO, 克雷格•贝瑞特仍担任CEO,戈登•格罗夫留任董事会主席。
英特尔发布超线程(Hyper-Threading)技术,这种技术能使一个处理器能同时运行多线程任务,从而提高多任务环境中的系统性能。
美国总统乔治•W•布什(小布什)向戈登•格罗夫颁发总统自由勋章。
公司发布专为高性能服务器和工作站设计的Itanium(安腾)2处理器。
•2003年~2005年
2003年
Intel累计销售处理器达到10亿片。
英特尔发布专用于迅驰移动技术,这种技术具有高性能、电池使用时间长、集成了无线联网能力等特点,可以使笔记本电脑变得更加轻巧。Pentium M处理器是Centrino的核心。
英特尔推出PXA800F蜂窝处理器,这是一款把蜂窝电话和手持电脑关键结构完全集成与单个晶片的微芯片。
2004年
2004年Intel公司推出的64位至强处理器,是英特尔迄今为止推出的最成功的企业级64位服务器产品。
2005年
推出双内核英特尔至强处理器。
推出欢悦平台
英特尔信息技术峰会聚焦多内核平台
超越主频的全新平台架构
英特尔加强支持64位计算 经济型电脑专用英特尔® 赛扬® D 处理器闪亮登场
英特尔公布第二季度收入突破92亿美元 每股收益33美分
英特尔架构服务器喜获双内核动力 英特尔推出双内核入门级服务器平台
新架构带来更出色性能 英特尔安腾2处理器采用更快的前端总线
英特尔将提前推出双内核、超线程(HT)服务器平台
英特尔公司开发超低功耗制程 新型65纳米制程将进一步延长移动设备的电池使用时间
领先企业和技术计算供应商创立安腾® 解决方案联盟,全新、广泛的行业支持计划将加速安腾® 解决方案的上市进程
全新双核英特尔® 至强® 处理器面世,英特尔发运多核服务器平台
2005 年秋季英特尔信息技术峰会,多核平台成就无限机遇
英特尔推出 90 纳米多级单元针对多媒体手机的高性能 NOR 闪存
•2006年~至今
2006年
英特尔第四季度收入 102 亿美元;每股收益 40 美分
英特尔在全球率先取得 45 纳米芯片制程技术开发重大成功
英特尔酷睿双核处理器登陆嵌入式市场
采用英特尔® 酷睿™ 微架构的电脑即将面世
英特尔下一代企业平台即将闪亮登场
英特尔新的高产量65纳米工厂开张
英特尔将向中国企业提供下一代BIOS核心技术
英特尔公司宣布进行重组—预计成本和运营开支将在2007年降低20亿美元,2008年降低30亿美元
英特尔推出嵌入式英特尔酷睿2双核处理器
高效节能 超越未来——英特尔2006年秋季信息技术峰会在上海举行
英特尔开启四核时代——全球最佳处理器,性能再创造新高
2007年
英特尔第四季度收入97亿美元
英特尔发布晶体管技术重大突破,为40年来计算机芯片之最大革新
英特尔信息技术峰会北京首发
在进入嵌入计算行业30年之际,英特尔推出四核处理器
多核时代虚拟化应用助推器在京发布
英特尔第二季度收入达87亿美元
英特尔在京发布刀片服务器平台开放规格
全新英特尔服务器处理器 速度与能效的极致选择
再来讲AMD。
AMD创办于1969年,当时公司的规模很小,但是从那时起到现在,AMD一直在不断地发展,目前已经成为一家年收入高达24亿美元的跨国公司。下面将介绍决定AMD发展方向的重要事件、推动AMD向前发展的主要力量,并按时间顺序回顾AMD各年大事。
1969-74 - 寻找机会
在公司刚成立时,所有员工只能在创始人之一的JohnCarey的起居室中办公,但不久他们便迁往美国加州圣克拉拉,租用一家地毯店铺后面的两个房间作为办公地点。到当年9月份,AMD已经筹得所需的资金,可以开始生产,并迁往加州森尼韦尔的901 Thompson Place,这是AMD的第一个永久性办公地点。
在创办初期,AMD的主要业务是为其它公司重新设计产品,提高它们的速度和效率,并以"第二供应商"的方式向市场提供这些产品。
1969年5月1日--AMD公司以10万美元的启动资金正式成立。
1969年9月--AMD公司迁往位于901 Thompson Place,Sunnyvale 的新总部。
1969年11月--Fab 1产出第一个优良芯片--Am9300,这是一款4位MSI移位寄存器。
1970年5月--AMD成立一周年。这时AMD已经拥有54名员工和18种产品,但是还没有销售额。
1970--推出一个自行开发的产品--Am2501。
1972年11月--开始在新落成的902 Thompson Place 厂房中生产晶圆。
1972年9月--AMD上市,以每股15美元的价格发行了525万股。
1973年1月--AMD在马来西亚槟榔屿设立了第一个海外生产基地,以进行大批量生产。
1974--AMD以2650万美元的销售额结束第五个财年。
1974-79 - 定义未来
AMD在第二个五年的发展让全世界体会到了它最持久的优点--坚忍不拔。尽管美国经济在1974到75年之间经历了一场严重的衰退,AMD公司的销售额也受到了一定的影响,但是仍然在此期间增长到了168亿美元,这意味着平均年综合增长率超过60%。
1974--位于森尼韦尔的915 DeGuigne建成。
1975--AMD通过AM9102进入RAM市场。
1975--AMD的产品线加入8080A标准处理器和AM2900系列。
1976--AMD和Intel签署专利相互授权协议。
1977--西门子和AMD创建Advanced Micro Computers (AMC) 公司。
1978--AMD在马尼拉设立一个组装生产基地。
1978--AMD的销售额达到了一个重要的里程碑:年度总营业额达到1亿美元。
1978--奥斯丁生产基地开始动工。
1979--奥斯丁生产基地投入使用。
1979--AMD在纽约股票交易所上市。
1980 - 1983 - 寻求卓越
在20世纪80年代早期,两个著名的标志代表了AMD的处境。第一个是所谓的"芦笋时代",它代表了该公司力求增加它向市场提供的专利产品数量的决心。与这种高利润的农作物一样,专利产品的开发需要相当长的时间,但是最终会给前期投资带来满意的回报。第二个标志是一个巨大的海浪。AMD将它作为"追赶潮流"招募活动的核心标志,并用这股浪潮表示集成电路领域的一种不可阻挡的力量。
AMD的研发投资一直领先于业内其他厂商。在1981财年结束时,该公司的销售额比1979财年增长了一倍以上。在此期间,AMD扩建了它的厂房和生产基地,并着重在得克萨斯州建造新的生产设施。AMD在圣安东尼奥建起了新的生产基地,并扩建了奥斯丁的厂房。AMD迅速地成为了全球半导体市场中的一个重要竞争者。
1981--AMD的芯片被用于建造哥伦比亚号航天飞机。
1981--圣安东尼奥生产基地建成。
1981--AMD和Intel决定延续并扩大他们原先的专利相互授权协议。
1982--奥斯丁的第一条只需4名员工的生产线(MMP)开始投入使用。
1982--AMD和Intel签署围绕iAPX86微处理器和周边设备的技术交换协议。
1983--AMD推出当时业内最高的质量标准INTSTD1000。
1984-1989 - 经受严峻考验
在1986年,变革大潮开始席卷整个行业。日本半导体厂商逐渐在内存市场中占据了主导地位,而这个市场一直是AMD业务的主要支柱。同时,一场严重的经济衰退冲击了整个计算机市场,限制了人们对于各种芯片的需求。AMD和半导体行业的其他公司都致力于在日益艰难的市场环境中寻找新的竞争手段。
到了1989,Jerry Sanders开始考虑改革:改组整个公司,以求在新的市场中赢得竞争优势。AMD开始通过设立亚微米研发中心,加强自己的亚微米制造能力。
1984--曼谷生产基地开始动工。
1984--奥斯丁的第二个厂房开始动工。
1985--AMD首次进入财富500强。
1985--位于奥斯丁的Fabs 14 和15投入使用。
1985--AMD启动自由芯片计划。
1986--AMD推出29300系列32位芯片。
1986--AMD推出业界第一款1M比特的EPROM。
1986年10月--由于长时间的经济衰退,AMD宣布了10多年来的首次裁员计划。
1987--AMD与sony公司共同设立了一家CMOS技术公司。
1987年4月--AMD向Intel公司提起法律诉讼。
1987年4月--AMD和 Monolithic Memories公司达成并购协议。
1988年10月--SDC开始动工。
1989年9月4日- 展开变革
AMD在这段时期的发展主要是通过提供越来越具竞争力的产品,不断地开发出对于大批量生产至关重要的制造和处理技术,以及加强与战略性合作伙伴的合作关系而实现的。在这段时期,与基础设施、软件、技术和OEM合作伙伴的合作关系非常重要,它使得AMD能够带领整个行业向创新的平台和产品发展,在市场中再次引入竞争。
1995--富士-AMD半导体有限公司(FASL)的联合生产基地开始动工。
1995--Fab 25建成。
1996--AMD收购NexGen。
1996--AMD在德累斯顿动工修建Fab 30。
1997--AMD推出AMD-K6处理器。
1998--AMD在微处理器论坛上发布AMD速龙处理器(以前的代号为K7)。
1999--AMD推出AMD速龙处理器,它是业界第一款支持Microsoft Windows计算的第七代处理器。
2000--AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录。
2000--AMD的Dresden Fab 30开始首次供货。
2001--AMD推出AMD 速龙 XP处理器。
2001--AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。
2002--AMD 和UMC宣布建立全面的伙伴关系,共同拥有和管理一个位于新加坡的300-mm晶圆制造中心,并合作开发先进的处理技术设备。
2002--AMD收购Alchemy Semiconductor,建立个人连接解决方案业务部门。
2002--Hector Ruiz接替Jerry Sanders,担任AMD的首席执行官。
2002--AMD推出第一款基于MirrorBit(TM) 架构的闪存设备。
2003-AMD 推出面向服务器和工作站的AMD Opteron(TM)(皓龙) 处理器。
2003-AMD 推出面向台式电脑 和笔记簿电脑的AMD 速龙(TM) 64处理器。
2003-AMD推出 AMD 速龙(TM) 64 FX处理器 使基于AMD 速龙(TM) 64 FX处理器的系统能提供影院级计算性能。
2006至今--融聚与分拆
2006年7月24日AMD正式宣布54亿美元并购ATI,新公司将以AMD的名义运作。
AMD2006年10月25日宣布完成对加拿大ATI公司价值约54亿美元的并购案。
根据双方交易条款,AMD以42亿美元现金和5700万股AMD普通股收购截止2006年7月21日发行的ATI公司全部的普通股,通过此次并购, AMD在处理器领域的领先技术将与ATI公司在图形处理、芯片组和消费电子领域的优势完美结合,AMD将于2007年推出以客户为导向的技术平台,满足客户开发差异化解决方案的需求。
AMD同时将继续开发业界最好的处理器产品,让客户可以根据自身需求选择最佳的技术组合;从2008年起,AMD将超越现有的技术布局,改造处理器技术,推出整合处理器和绘图处理器的芯片平台。
2008年10月8日, AMD闪电宣布分拆其制造业务,与阿布扎比一家简称ATIC的高科技投资公司合资成立名为Foundry的新制造公司,引起全球IT界的轰动。根据协议,AMD将把德国德累斯顿的两家生产工厂以及相关的资产及知识产权全盘转入合资公司。AMD将拥有合资公司444%股份,ATIC则持有其余股份。至此,AMD彻底转型为一家芯片设计公司。

超威半导体(AMD,Advanced Micro Devices, Inc),是一家集成电路的设计和生产公司,成立于1969年,专为电脑、通信及电子消费类市场供应各种芯片产品,其中包括用于通信及网络设备的微处理器、闪存以及基于硅片技术的解决方案等。总公司设于美国加州硅谷内森尼韦尔,除了在世界各大城市设有办事处之外,还在美国、欧洲、日本及亚洲等地设有生产中心。公司有超过 70% 的收入来自国际市场,是一家真正意义上的跨国公司。公司在美国纽约股票交易所上市,代号为AMD。
AMD是目前唯一可与Intel匹敌的CPU厂商。AMD出品之CPU的特点是以较低的核心时脉频率产生相对上较高的运算效率,其主频通常会比同效能的Intel CPU低1GHz左右。自从Athlon XP上市以来,AMD与Intel的技术差距逐渐缩小。而在2003年时AMD抢先于Intel之前发表了具有64位元寻址的Athlon 64中央处理器,使得AMD的技术已经与Intel相当,或甚至在某些方面已经领先于Intel。在2005年时AMD追随Intel的脚步发布了拥有两个核心的中央处理器——Athlon 64 X2,该系列产品与Intel稍后推出的Core 2系列改良版双核心处理器,是目前PC用CPU里面效能最佳的两套系统。而由于两家厂商目前都是以双核心系统作为新产品的开发主轴,使得AMD的Athlon 64 FX-57成为世界上最快的单核心民用中央处理器(其他效能更高的产品都是采用双核心架构)。
AMD 年表
1969年,5月1日公司成立。
1970年,Am2501开发完成。
1972年,9月开始生产晶圆,同年发行股票。
1973年,1月第一个生产基地落成在马来西亚。
1975年,AM9102进入RAM市场。
1976年,与Intel公司签署专利相互授权协议。
1977年,与西门子公司创建AMC公司。
1978年,一个组装生产基地的落成在马尼拉。同年AMD公司年营业额达1亿美元。
1979年,股票在纽约上市,奥斯丁生产基地落成。
1981年,AMD制造的芯片被用于的建造航天飞机,同年决定与Intel公司扩大合作。
1982年,新式生产线(MMP)开始投入使用。
1983年,新加坡分公司成立,同年推出INTSTD1000质量标准。
1984年,曼谷生产基地建设并扩建奥斯丁公厂。
1985年,被列入财富500强。同年启动自由芯片计划。
1986年,10月,AMD公司首次裁员。
1987年,索尼公司合作生产CMOS芯片,4月向INTEL提起诉讼,这场官事持的续5年,以AMD胜诉告终。
1988年,10月SDC基地开始动工。
1990年,5月Rich Previte成为公司的总裁兼首席执行官。
1991年,3月生产AM386 CPU。
1992年,2月AMD对Intel法律诉讼结束,AMD胜诉,获得生产386处理器的资格。
1993年,4月开始生产闪存,同月,推出AM486
1994年,1月AMD与康柏公司合作,并供应AM485型 CPU。
1995年,Fab 25建成。
1996年,AMD收购NexGen。
1997年,AMD-K6出品。
1998年,K7处理器发布。
1999年,Athlon处理器问世。
2000年,AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录,同年Fab 30开始投入生产。
2001年,AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。
2002年,AMD收购Alchemy Semiconductor。
2003年,AMD 推出面向服务器Opteron(皓龙) 处理器,同年9月,推出第一款桌面级的64位微处理器。
2006年,AMD发布了Socket AM2,以取代Socket 754和Socket 939。
2006年,7月24日,AMD收购ATi
[编辑] AMD CPU年表
1989年 Am386SX/DX
1993年 Am486
1996年 K5
1997年4月 K6
1998年 K6-ii
1999年2月 K6-iii
1999年6月 K7 Athlon
2001年10月 K7 Palomino 核心 Athlon XP
2004年1月 K7 Barton 核心 Athlon XP
2004年9月 K8 Socket 754 Athlon 64, Socket 940 Athlon 64 FX
2004年7月 K8 Sempron
2004年6月 K8 Socket 939 Athlon 64
2005年3月 K8 Socket 754 Turion 64
2005年4月 K8 Athlon 64 X2 Dual-core
2006年5月 K8 Socket AM2 Athlon 64, Socket S1 Turion 64 X2
2006年8月 K8 Socket F Opteron
[编辑] 产品评价
AMD处理器产品特点可分为三个阶段:
[编辑] 第一阶段
80486至K6阶段。初期的产品策略主要是以较低廉的产品价格为诉求,虽然最高性能不若同期的Intel产品,但却拥有较佳的价格性能比。
[编辑] 第二阶段
K7阶段。K7的性能尤其是在浮点运算能力方面,受到不少DIY(自行组装电脑)用户的欢迎。由于相对于Intel,AMD对于CPU的倍频锁定限制较松,因此广受许多超频用户的欢迎。但也由于缺乏过热保护,超频过度的K7系列CPU有较高的烧毁风险,导致部分消费者对其稳定度的信心偏低。
[编辑] 第三阶段
K8阶段。由于率先于Intel之前优先投入64位元CPU的市场,使得AMD在64位元CPU的领域有比较早发展的优势,此阶段的AMD产品仍采取了一贯的低主频高性能策略,解决因为电气性能有限导致CPU不稳定和发热量、耗电功率过大的问题。
[编辑] 产品线
Athlon 64
Sempron
Turion 64
Opteron
Geode
AMD的产品线中,大致分为 Sampron、Athlon 64 与 Athlon FX三大系列
Sampron 属于较低阶配备,工作频率低,但温度相对低很多。
Athlon 64 X2 属于双核心技术,适用于要处理多工作的使用者。
Athlon FX 属于单核心技术,执行效能较高,虽然不具备多线程处理能力,但对多媒体处理、3D游戏,FX系列是最佳的选择。
[编辑] ATI
超威于2006年7月24日(GMT+8)宣布以54亿美元全面并购ATi,到2006年7月底并购工作已经开始,原ATi的研发中心都已开始人事变动,AMD和ATi在等待来自联邦法院的裁决,认定该兼并生效。
ATi公司是一家致力于开发图形处理芯片的公司,其影雷系列显示芯片是民用图形显示市场上占据较大份额的芯片之一。除显示芯片之外,ATI最近还开发主板控制芯片。有人认为,AMD并购ATi就是为了期望拥有自主主板控制芯片研发能力,不再受制于台湾的芯片厂商和Nvidia。但是有人担心,兼并ATi后,在图形芯片领域AMD和Nvidia最终会从现在的合作走向竞争。

AMD(Advanced Micro Devices)的英文缩写,超微半导体 注释:Advanced为先进的,Micro为微小之意,英文直译为先进微半导体,但是AMD公司为自己的中文命名是超威半导体,所以也可称为超微半导体(这里使用的是官方说法) 。AMD成立于1969 年,总部位于加利福尼亚州桑尼维尔。 AMD 公司专门为计算机、通信和消费电子行业设计和制造各种创新的微处理器、闪存和低功率处理器解决方案。AMD 致力为技术用户——从企业、政府机构到个人消费者——提供基于标准的、以客户为中心的解决方案。其在CPU市场上的占有率仅次于Intel。 AMD 在全球各地设有业务机构,在美国、中国、德国、日本、马来西亚、新加坡和泰国设有制造工厂,并在全球各大主要城市设有销售办事处,拥有超过 16万名员工。 2009 年, AMD 的销售额是54亿美元。 AMD 有超过 70% 的收入都来自于国际市场,是一家真正意义上的跨国公司。公司在美国纽约股票交易所上市,代号为 AMD。
[编辑本段]业务发展
在 AMD,坚持“客户为本 推动创新”的理念,这是指导 AMD 所有业务运作的核心准则。 AMD与客户建立了成功的合作关系,以便更加深入地了解他们的需求;AMD与技术领袖开展了密切的合作,以开发下一代解决方案,拓展全球市场和推广 AMD 的品牌;我们还与一些以克服艰巨困难并依靠技术获得成功的世界级领先者建立了合作关系。 迄今为止,全球已经有超过 2,000 家软硬件开发商、 OEM 厂商和分销商宣布支持AMD64位技术。在福布斯全球 2000 强中排名前 100 位的公司中,75% 以上在使用基于 AMD 皓龙(TM) 处理器的系统运行企业应用,且性能获得大幅提高。
[编辑本段]产品系列
计算产品
对于需要高性能计算和 IT 基础设施的企业用户来说, AMD 提供一系列解决方案。 o 1981年,AMD 287 FPU ,使用Intel 80287核心。产品的市场定位和性能与Intel 80287基本相同。也是迄今为止AMD公司 唯一生产过的FPU产品,十分稀有。 o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel 8080核心。产品的市场定位和性能与Intel同名产品基本相同。 o AMD 386(1991年)微处理器,核心代号P9,有SX和DX之分,分别与Intel 80386SX和DX相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器----内部总线32位,外部16位。AMD 386DX的性能与Intel 80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。 o AMD 486DX(1993年)微处理器,核心代号P4,AMD自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel。 o AMD 5X86(1995年)微处理器,核心代号X5,AMD公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品----334、133MHz,035微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。 o AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的"经典奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"经典奔腾"略强;浮点预算能力远远比不上"经典奔腾",但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小(惯例吧:)并且没有在中国大陆销售。 o AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX。 o K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上025微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,K62也继承了AMD一贯的传统,同频型号比Intel产品价格要低25%左右,市场销量惊人。K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产:)。K6 3D曾经有一款非标准的250MHz产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。 o AMD于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了025微米制造工艺,集成256KB二级缓存(竞争对手Intel的新赛扬是128KB),并以CPU的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。 oAMD于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheduling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。 oAMD于2007下半年推出K10架构。 采用K10架构的 Barcelona为四核并有463亿晶体管。Barcelona是AMD第一款四核处理器,原生架构基于65nm工艺技术。和Intel Kentsfield四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。 ● Barcelona新特性解析:引入全新SSE128技术 Barcelona中的一项重要改进是被AMD称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。对于128位的SSE *** 作,K8处理器需要将其作为两个64位指令对待。也就是说,当一个128位 SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。 而Barcelona加宽了执行单元从64位到128位,所有128位的SSE *** 作不再需要进行解码分解为两个64位 *** 作,并且浮点调度器也可以支持这种128位 SSE *** 作,提高了执行效率。 提高SSE指令执行单元带宽的同时,也会带来一些新的变化,也可以说是新的瓶颈:指令存取带宽。为了将并行处理器过程中解码数量最大化,Barcelona开始支持32字节每时钟周期的指令存取,而先前K8架构只支持16字节。32字节的指令存取带宽不仅对处理器SSE代码有帮助,同时对于整数指令也有效果。 ● Barcelona新特性解析:内存控制器再度强化 当年当AMD将内存控制器集成至CPU内部时,我们看到了崭新而强大的K8构架。如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。 Intel Xeon服务器所有使用的FB-DIMM内存一大优势是,可以同时执行读和写命令到AMB,而在标准的DDR2内存中,你只能同时进行一个 *** 作,而且读和写的切换会有非常大的损失。如果是一连串的随机混合执行的话,将会带来非常严重的资源浪费,而如果是先全部读然后再转换到写的话,就可以避免性能的损失。K8内存控制器就采用读取优先于写的策略来提高运行效率,但是Barcelona则更加智能化。 但是读取的数据会被先存放在buffer中,而不采用先直接执行写,但当它的容量达到了极限就会溢出,为了避免这种情况,在此之前才对读写之间进行切换,同时可以带来带宽和延迟方面效率的提高。K8核心配备的是128-bits宽度的单内存控制器,但是在Barcelona中,AMD把它分割成两个64-bit,每个控制器可以独立的进行 *** 作,因此它可以带来效率上的不小提升,尤其是在四核执行的环境下,每个核心可以独立占有内存访问资源。 Barcelonas中集成的北桥部分(注意不是主板北桥)也被设计成更高的带宽,更深的buffers将允许更高的带宽利用率,同时北桥自身已经可以使用未来的内存技术,比如DDR3。 内存控制器的预取功能是运用相当广泛、十分重要的一项功能。预取可以减少内存延迟对整体性能的负面影响。当NVIDIA发布nForce2主板时,重点介绍的就是nForce2芯片组的128位智能预取功能。Intel在发布Core 2处理器之时也强调了CORE构架每核心拥有三个预取单元。 K8构架中每个核心设计有2个预取器,一个是指令预取器,另一个是数据预取器。K8L构架的Barcelona保持了2个的数量,但在性能上有了较大的改进。一个明显的改进是数据预取器直接将数据寄存入L1缓存中,相比K8构架中寄存入L2缓存的做法,新的数据预取器准确率更高,速度更快,内存性能及CPU整体性能将得益于此。 ● Barcelona新特性解析:创新——三级缓存 受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。 处理器整合内存控制器可以说是一项杰作,拥有整合内存控制器的K8构架仅依靠512KB的L2缓存就能够击败当时的对手Pentium 4。直到现在的Athlon 64 X2也依然保持着Intel 2002年就已过时的512KB L2缓存。 现在Core 2已经拥有了4MB的L2缓存,看来Intel和AMD之间的缓存差距还将保持,因为Barcelona的L2缓存依然是512KB。相比之下,Intel四核的Kentsfield芯片拥有8MB的L2缓存,而2007年末上市的新型Penryn芯片将拥有12MB的L2缓存。 Barcelona的缓存体系和K8构架有一定的相似之处,它的四颗核心各拥有64KB的L1缓存和512KB的L2缓存。从简化芯片设计的角度来看,四核心共享巨大的L2缓存对K8L构架而言并不合适,所以AMD引入了L3缓存,得益于65nm工艺,Barcelona在一颗晶圆上集成四颗核心外,还集成了一块2MB容量的L3缓存。也就是说L3缓存与4颗内核同样原生于一块晶圆,其容量为最小2M起跳。同L2缓存一样,L3缓存也是独立的,L1缓存的数据和L3缓存的数据将不会重复。 Barcelona的缓存工作原理是:L2缓存是作为L1缓存的备用空间。L1缓存储存着CPU当前最需要的数据,而当空间不足时,一些不是最重要的数据就转移到L2缓存中。而当未来再次需要时,则从L2缓存中再次转移到L1缓存中。新加入的L3缓存延续了L2缓存的角色,四颗核心的L2缓存将溢出的数据暂时寄存在L3缓存中。 L1缓存和L2缓存依然分别是2路和16路,L3缓存则是32路。快速的32路L3缓存不仅可以更好的满足多任务并行,而且对单任务的执行也有着较大积极作用。尤其在3D运用方面,2MB的L3缓存将对性能产生极大的推进作用。 AMD全新45nm的Shanghai架构 2008年11月13日,AMD公司宣布其代号为“上海”的新一代45nm四核皓龙处理器已经广泛上市。“上海”性能最高提升达35%,而空载时的功耗可显著降低35%。新一代四核AMD皓龙处理器采用创新的设计,能够带来更高的虚拟化性能和每瓦性价比,帮助数据中心提高效率,降低复杂性,从而最大限度地满足IT管理者的需要,以更低的投入实现更高的产出。 AMD公司负责计算解决方案业务的高级副总裁Randy Allen表示:“新一代四核AMD皓龙处理器是在正确的时间诞生的一款正确的产品。堪称完美的提前推出,使之成为x86服务器性能的新王者。通过与OEM厂商和解决方案供应商等合作伙伴的紧密合作,AMD的创新技术在满足企业用户目前最基本需求的同时,还为其未来发展做好准备。自4年前AMD推出世界首款x86双核处理器以来,这一增强的新一代皓龙处理器带来了AMD产品性能和每瓦性价比的最大提升。” 领先的性能满足当今最迫切的商务需求 数据中心的管理者们面对日益增长的压力,诸如网络服务、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。 卓越的虚拟化性能 具有改进的AMD直连架构和AMD虚拟化技术(AMD-V(TM)),45nm四核皓龙处理器成为已有的基于AMD技术的虚拟化平台的不二选择,目前全球的OEM厂商已基于上一代AMD四核皓龙处理器推出了9款专门为虚拟化应用而设计的服务器。新一代处理器可提供更快的虚拟机转换时间,并优化快速虚拟化索引技术(RVI)的特性,从而提高虚拟机的效率,AMD的AMD-V(TM)还可以减少软件虚拟化的开销。 无与伦比的性价比 与历代的AMD皓龙处理器相比,新一代四核皓龙处理器带来了前所未有的性能和每瓦性能比显著增强,包括: o 以与上代四核皓龙处理器相同的功耗设计,大幅提高CPU时钟频率。这得益于处理器设计增强、AMD业界领先的45nm沉浸式光刻技术和超强的处理器设计与验证能力。 o L3缓存容量提高200%,达到6MB,增强虚拟化、数据库和Java等内存密集型应用的性能。 o 支持DDR2-800内存,与现有AMD皓龙处理器相比内存带宽实现了大幅提高,并且比竞品使用的Fully-Buffered DIMM具有更高的能效。 o 即将推出的超传输总线(TM)30 (HyperTransport(TM) 30)技术将进一步增强AMD革命性的直连架构,计划于2009年2季度将处理器之间的通信带宽提高到176GB/s。 无可匹敌的节能特性 AMD皓龙处理器业已带来了业界领先的X86服务器处理器每瓦性价比,与之相比,新一代45nm四核AMD皓龙处理器在空载状态的能耗可以大幅降低35%,而性能可提高达35%。“上海”采用了众多的新型节能技术:AMD智能预取技术,可允许处理器核心在空载时进入“暂停”状态,而不会对应用性能和缓存中的数据有任何影响,从而显著降低能耗;AMD CoolCore(TM) 技术能够关闭处理器中非工作区域以进一步节省能耗。 在平台配置相似的情况下,基于75瓦AMD 四核皓龙处理器的平台,与基于50瓦处理器的竞争平台相比,具有高达30%的每瓦性能比优势。相似平台配置下,基于AMD 四核皓龙处理器2380的平台,空载状态的功耗为138瓦;与之对比,基于英特尔四核处理器的平台在相同状态下的功耗则为179瓦。基于AMD 四核皓龙2380型号处理器的平台,在SPECpower_ssj(TM)2008基准测试中取得761ssj_ops/每瓦的总成绩 (308,089 ssj_ops @ 100% 的目标负载),而英特尔四核平台为总成绩为561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目标负载) 4 前所未有的平台稳定性 作为唯一用相同的架构提供2路到8路服务器处理器的x86微处理器制造商,AMD新一代45nm四核皓龙处理器在插槽和散热设计与上代四核和双核AMD皓龙处理器兼容,延续了AMD的领先地位。这可以帮助消费者减少平台管理的复杂性和费用,增强数据中心的正常运行时间和生产力。新的45nm处理器适用于现有的Socket 1207插槽架构,未来代号为“Istanbul”的AMD 下一代皓龙处理器也计划使用相同插槽。 全球OEM 厂商支持 作为业内最易于管理和一致的x86服务器平台,由于采用AMD皓龙处理器,至少是部分原因,全球OEM和系统开发商能够迅速完成验证流程,并预计从本月起开始交付基于增强的四核AMD皓龙处理器的下一代系统。本季度和2009年第一季度,基于增强的四核AMD皓龙处理器的系统的供应量有望迅速增长。 惠普工业标准服务器业务部营销副总裁Paul Gottsegen 表示:“通过采用基于新 ‘上海’处理器的 HP ProLiant服务器,客户可以降低成本,同时使能效和性能更上层楼。在与AMD公司过去的4年合作中,我们为各种规模的客户提供了基于AMD皓龙处理器的平台,并取得了空前的成功。初期反馈结果表明‘上海’将成为赢者。” Sun公司系统业务部执行副总裁John Fowler 表示:“ Sun的创新系统设计和Solaris与增强型四核AMD皓龙处理器相结合,将为虚拟化应用和系统整合带来具有难以置信的强大性能、可扩展性和高能效特性的x64平台。在数据中心增长过程中,基于AMD增强型四核皓龙处理器的Sun服务器能够处理最复杂的数据群并灵活扩展。而由于历代平台之间的连续性,客户有信心确保新系统与已部署的AMD皓龙系统实现无缝兼容。” 戴尔商用产品部高级副总裁Brad Anderson表示:“戴尔和AMD公司共同致力于为企业提供强大的全系列产品,以简化IT环境管理并降低管理成本。我们的PowerEdge服务器专门设计以充分利用AMD芯片中集成的虚拟化特性。这种紧密协作效果显著,2路和4路机架和刀片式PowerEdge服务器已经取得了破纪录的虚拟化性能。” IBM刀片式服务器副总裁Alex Yost表示:“自2003年以来,IBM就利用AMD皓龙处理器的性能和直连架构满足企业用户计算密集型的需求,并为其带来更多选择。IBM正在AMD新处理器高能效和虚拟化的基础上进一步创新,为我们的客户带来更高的价值。” o 采用直连架构的 AMD 皓龙(Opteron)(TM) 处理器可以提供领先的多技术。 使IT管理员能够在同一服务器上运行32位与64位应用软件,前提是该服务器使用的是64位 *** 作系统。 o AMD 速龙(Athlon64),又叫阿斯龙(TM) 64 处理器可以为企业的台式电脑用户提供卓越的性能和重要的投资保护,具有出色的功能和性能,可以提供栩栩如生的数字媒体效果――包括音乐、视频、照片和 DVD 等。 o AMD 双核速龙(TM) 64(AthlonX2 64 )处理器可以提供更AMD双核速龙64处理器架构高的多任务性能,帮助企业在更短的时间内完成更多的任务(包括业务应用和视频、照片编辑,内容创建和音频制作等)。这些强大的功能使其成为那些即将上市的新型媒体中心的最佳选择。 o AMD 炫龙(TM) 64(Turion64) 移动计算技术可以利用移动计算领域的最新成果,提供最高的移动办公能力,以及领先的 64 位计算技术。 o AMD 闪龙(TM)(Sempron64) 处理器不仅可以为企业提供出色的性价比,而且可以提高员工的日常工作效率。 o AMD 羿龙(TM)(phenom)处理器 全新架构的4核处理器,进一步满足用户需求(在命名中取消“64”,因为现今的CPU都是64位的,不必再标明)。为满足消费者的不同需求,AMD近期也推出了3核羿龙产品! 对于消费者, AMD 也提供全系列 64 位产品。 o AMD 雷鸟(TM) (Thunderbird)处理器 o AMD 钻龙(TM) (Duron)处理器可以说是雷鸟的精简便宜版,架构和雷鸟处理器一样,其差别除了时脉较低之外,就是内建的L2 Cache,只有64K 。
嵌入式解决方案
AMD 的嵌入式解决方案以个人电脑以外的上网设备为目标市场,锁定的目标产品包括平板电脑、汽车导航及娱乐系统、家庭与小型办公室网络产品以及通信设备。AMD Geode(TM) 解决方案系列不仅包括基于x86的嵌入式处理器,还包括多种系统解决方案。AMD 的一系列 Alchemy(TM) 解决方案有低功率、高性能的 MIPS(TM) 处理器、无线技术、开发电路板及参考设计套件。随着这些新的解决方案相继推出,AMD 的产品将会更加多元化,有助确立 AMD 在新一代产品市场上的领导地位。
精确生产技术
为了在当今竞争异常激烈的市场中获得成功,跨国电子公司需要值得信赖的供应商和合作伙伴来为他们按时按量地提供他们所需要的解决方案。因此, AMD 采用了一种高效的、基于合作伙伴的研发模式,确保它的产品和解决方案可以始终在性能和功率方面保持领先。借助于行业伙伴的技术和资源, AMD 为它的产品集成了先进的亚微米技术。它的产品通常领先于行业总体水平,而且成本远低于平均成本。 为了在批量生产过程中无缝地采用这些先进的技术, AMD 开发和采用了数百种旨在自动确定最复杂的制造决策的专利技术。这些业界独一无二的功能现在被统称为自动化精确生产( APM )。它们为 AMD 提供了前所未有的生产速度、准确性和灵活性。
[编辑本段]各产品发展
桌面平台
自成立以来,AMD就不断地开发新产品,并逐渐形成了一amd 未来产品路线套与众不同的企业文化,而众多员工也在事业上取得了很大的成就。下面将简单介绍AMD近三十年来的发展历程,从中我们可以预见公司的灿烂前景。 AMD的历史悠久,业绩显赫。这个传统已经成为一股凝聚力,将AMD的全球员工紧密地团结在一起。AMD创办于1969年,当时公司的规模很小,甚至总部就设在一位创始人的家中。但是从那时起到现在,AMD一直在不断地发展,目前已经成为一家年收入高达24亿美元的跨国公司。下面将介绍决定AMD发展方向的重要事件、推动AMD向前发展的主要力量,并按时间顺序回顾AMD各年大事。 1969-74 - 寻找机会 对Jerry Sanders来说,1969年5月1日是一个非常重要的日子。在此之前的几个月里,他与其它七个合作伙伴一直为创建一家新公司而埋头苦干。Jerry已经在上一年辞去了Fairchild Semiconductor公司全球行销总监的职务。 在公司刚成立时,所有员工只能在创始人之一的JohnCarey的起居室中办公,但不久他们便迁往美国加州圣克拉拉,租用一家地毯店铺后面的两个房间作为办公地点。到当年9月份,AMD已经筹得所需的资金,可以开始生产,并迁往加州森尼韦尔的901 Thompson Place,这是AMD的第一个永久性办公地点。 在创办初期,AMD的主要业务是为其它公司重新设计产品,提高它们的速度和效率,并以"第二供应商"的方式向市场提供这些产品。AMD当时的口号是"更卓越的参数表现"。为了加强产品的销售优势,该公司提供了业内前所未有的品质保证--所有产品均按照严格的MIL-STD-883标准进行生产及测试,有关保证适用于所有客户,并且不会加收任何费用。 在AMD创立五周年时,AMD已经拥有1500名员工,生产200多种不同的产品--其中很多都是AMD自行开发的,年销售额将近2650万美元。 1974-79 - 定义未来 AMD在第二个五年的发展让全世界体会到了它最持久的优点--坚忍不拔。尽管美国经济在1974到75年之间经历了一场严重的衰退,AMD公司的销售额也受到了一定的影响,但是仍然在此期间增长到了168亿美元,这意味着平均年综合增长率超过60%。 在AMD成立五周年之际,AMD举办了一项后来发展成为公司著名传统的活动--它举办了一场盛大的庆祝会,即一个由员工及其亲属参加的游园会。 这也是AMD大幅度扩建生产设施的阶段,这包括在森尼韦尔建造915 DeGuigne,在菲律宾马尼拉设立一个组装生产基地,以及扩建在马来西亚槟榔屿的厂房。

看起来似乎有强行把芯片设计和数据中心建设拉到一起尬聊的感觉,但世间也没有那么多的一见如故,一些有意义的讨论未尝不是从尬聊开始的。

就我个人而言,今年已经多次在关于数据中心的文章和(线上)分享中提到AMD:“从1月29日开始到2月6日,腾讯会议每天都在进行资源扩容,日均扩容云主机接近15万台,8天总共扩容超过10万台云主机,共涉及超百万核的计算资源投入,全部由腾讯云自研的服务器星星海提供支撑。”这款服务器基于AMD去年8月发布的代号Rome(罗马)的第二代EPYC处理器,最大的特点就是核多——双路配置再算上超线程,一台采用腾讯云定制版EPYC处理器的星星海服务器可以为云服务器提供多达180个核——也就是说,这100万核服务器资源,“只”需要不到6000台该款自研服务器即可满足。

腾讯云星星海SA2服务器采用2U高度结合类似远程散热片(remote heat-sink)的设计,配合6个60mm风扇,据称可以支持2个300W级别的CPU(AMD第二代EPYC处理器公开版本最高TDP为280W)

实际上,官方名称为AMD EPYC 7002系列的第二代EPYC处理器最多能提供64个核芯、128个线程,腾讯云定制版本选择了48核芯(96线程)而已。至少在CPU的核数(core count)上,AMD给Intel(英特尔,昵称“大英”)造成了很大的压力。上个月英特尔发布了代号为Cooper Lake的第三代至强可扩展处理器(Xeon Scalable Processor,XSP),主打四路和八路市场,四路配置可提供112核芯224线程,核数上堪与双路EPYC 7002系列抗衡,为10nm制程的Ice Lake争取时间。

摩尔定律难以延续的后果就是CPU的功耗持续攀升,第一代至强可扩展处理器(公开版)里TDP最高的205W,到第三代已是寻常,250W算是克制——毕竟要考虑四路的散热需求

话说上一次AMD搞得大英如此狼狈,还要追溯到本世纪初的64位路线之争。众所周知,英特尔是x86及其生态(特别是软件生态)的缔造者,属于“亲妈”级别,AMD充其量是个“后妈”。但是,x86几十年的发展史证明,“亲妈”未必就比“后妈”更了解孩子的发展潜力。也可以前一阵大火的剧集《隐秘的角落》为例,看完就会发现,对于朱朝阳的隐藏能力,后妈的认知似乎先于亲妈。

Cooper Lake:你看我还有机会吗?

简单的说,Intel建立发展x86生态,AMD坚定捍卫x86路线——不断改造作为生态核心的x86处理器,焕颜新生

盛衰无常:架构与制程的双簧

虽然已经在过去十年中逐渐沦为爱好者口中的“牙膏厂”,但在历史上,英特尔一直不乏创新精神。对待x86的态度可以算是这种精神的一个体现,起码在进入64位时代之前,英特尔其实不太瞧得上x86,总觉得这个娃太low——可能是亲妈更了解孕育过程中的种种先天不足吧——几次三番地在重大的转折点,想要“与时俱进”,重起炉灶,带给用户“船新体验”。反而是AMD屡屡在关键时刻出来捍卫x86,通过翻新加盖来维持其生命力。

64位是关键的转折点。上世纪九十年代末,还是32位的x86刚“插足”服务器市场不久,英特尔选择与惠普(HP)联手开发基于IA-64架构的Itanium(安腾)作为接班人,与已经64位了的RISC阵营大佬们对抗。然而,AMD认为x86还可以抢救一下,决定通过64位扩展来“续命”,并在2003年4月发布首款64位x86处理器Opteron,两年后又把x86(-64)带入多核时代。

此时,英特尔已经在IA-64的路上走了十多年。时过境迁,当初设定的目标并没有实现,而x86扩展到64位和多核之后,不仅软件和应用的生态系统得到了完整的继承,性能也完全可以一战。用户用脚投票,大英不得不从。

第二代EPYC处理器发布会上,Google出示2008年7月9日上线的其第100万台服务器的照片,追诉与AMD的革命友情……还是台四路服务器

英特尔痛定思痛,决定用架构和制程构筑双保险,在2007年提出了Tick-Tock(取自于时钟的“嘀-嗒”周期)量产模式,即先通过制程升级将芯片面积缩小,是为Tick;再基于 *** 练纯熟的制程改用新的微架构,是为Tock。当时的英特尔工厂在技术和产能上都占据明显优势,只要架构上回到正轨,左右手组合拳一出,产量受限的AMD哪里支撑得住?在2008年推出Nehalem微架构之后,英特尔终于夺回主动权。

在英特尔施加的强大压力下,AMD在处理器架构上也犯了错误,2011年推出的Bulldozer(推土机)架构采用了即使现在看来也过于激进的模块化设计。随着2012年英特尔开启至强E5时代,AMD在节节失利后不得不退出服务器市场,上一个巅峰期彻底结束。

有道是:福兮祸所依,祸兮福所伏。先贤曾经曰过:纵有架构、制程双保险,奈何CEO是单点。2016年英特尔推出最后一代至强E5/E7(v4),这是英特尔首批采用14nm制程的服务器CPU,同时也宣告了Tick-Tock模式的终结,改用Process–Architecture–Optimization (制程-架构-优化)的三步走模式。

在这个可以简称为PAO的模式里,虽然仍是先制程、后架构的节奏,但新加入的优化不管是针对两者中的哪一个还是兼而有之,都起到了拉长制程换代周期的效果。第三代至强可扩展处理器已经是第四波采用14nm制程的服务器CPU,14nm后面的“+”都数不清楚有几个了——还好预计年底发布的Ice Lake将终止这个“土拨鼠之日”式的制程循环。

架构层面上,从代号Skylake的初代至强可扩展处理器开始,由环形总线改为6×6的2D-mesh,然后持续“优化”。在架构的角度,Mesh和环形总线都属于所谓传统的单片(Monolithic)式架构,优点是整体性好,涉及到I/O的性能比较有保证;缺点是对制程不太友好,随着规模的扩大,譬如核数和Cache的增加,良率上的挑战很大,高端产品的成本下不来,这对于追求高核数的云计算服务提供商显然不是个好消息。


至强E5/E7 v4的四环(2组双向环形总线)与至强SP的6×6 Mesh架构

关键时刻,又是沉寂多年的AMD挺身而出,接盘Tick-Tock,以自己的方式“维护”摩尔定律。

这个方式,就是模块化。

MCM:同构对等模块化的利与弊

先简单回顾一下AMD之前的模块化设计为什么会失败。 Bulldozer架构的模块化设计,建立在AMD对未来应用趋势的不靠谱假设上,即整数(Integer,INT)运算将占据绝对主导地位,结论是增加整数运算单元,减少浮点(Floating Point,FP)运算单元。 于是,Bulldozer架构很“鸡贼”的采用了两个(具有完整整数运算单元的)核芯共用一个浮点运算单元的模块化设计,两个模块就可以提供4个核芯(但只有2个浮点运算单元),6核以此类推。

模块化本身并没有错,Intel Nehalem的模块化设计就很成功。Bulldozer错在“拆东墙补西墙”,结果连补强都算不上

不用放马后炮,这也是一个妄揣用意(用户意志)的行为。即使是在AI大行其道的今天,第二代英特尔至强可扩展处理器已经支持INT8加速推理运算,也不能和通常意义上CPU的整数运算划等号。贸然押宝,错了当然怪不得别人。

不难看出,Bulldozer的模块化,与之前Intel Nehalem架构的模块化设计,只限于架构层面,并不是为制程考虑——CPU不论几个模块多少核,都是作为一个整体(die)来制造的,毕竟十年前制程还没到瓶颈。

然而,到了AMD以代号Naples的(第一代)EPYC处理器重返服务器市场的2017年,摩尔定律放缓的迹象已很明显。同样的14nm(可能还没有英特尔的先进)制程,AMD如何以更低的成本提供更多的核芯?

EPYC系列处理器基于AMD的Zen系列架构,从Zen、Zen+到Zen 2,以及规划中的Zen 3的发展路线,有点像前面提到的Tick-Tock:开发一个良好的基础然后交替演进,不断优化。

与先辈们不同,Zen系列的模块化明显侧重于解决制程面对的挑战,即芯片在物理上被切割为多个die(比较小的芯片更容易制造,良率有保证,有利于降低成本),通过Infinity Fabric(IF)互连为一个整体,所以每个die就是一个模块,但不一定是模块化设计的最小单位。

第一代EPYC处理器的4个die及Infinity Fabric示意

还是从初代EPYC处理器所采用的Zen架构说起。Zen确立了该系列计算单元模块化的最小单位CCX(Core Complex,核芯复合体),每个CCX包括4个Zen核芯(Core),以及8 MiB共享L3 Cache,每核芯2 MiB。

从AMD公开的示意图来看,各片(Slice)L3 Cache之间的连接方式像是full-mesh(全网状,即每两个点之间都有直接连接,无需跳转),CCX内部的跨核芯L3 Cache访问是一致的

Zen的CCD里除了2个CCX,还有2个DDR内存控制器(各对应1个内存通道),用于片上(die之间)互连的Infinity Fabric(IF On-Package,IFOP),而CPU之间互连的Infinity Fabric(IF Inter-Socket,IFIS)与对外的PCIe通道是复用的——这个知识点在后面会用到。

芯片层面的模块是CCD(Core Complex Die),包括2个CCX,共8个Core、4 MiB L2 Cache、16 MiB L3 Cache。官方名称为AMD EPYC 7001系列的第一代EPYC处理器只有CCD这一种(die层面的)模块,所以每个CCD除了2个CCX,还有大量I/O接口器件,包括DDR、Infinity Fabric/PCIe控制器,CCX占CCD面积的比例只比一半略多(56%)。

这个多芯片模块(multi-chip module,MCM)架构的代号为Zeppelin(齐柏林),四个这样的“复合型”CCD构成完整的第一代EPYC处理器,最多能提供32核芯、64 MiB L3 Cache,直接减少CCD的数量就会得到面向PC市场的高端(2×CCD)和主流产品(单CCD)。

按照AMD提供的数据:每个die的面积为213mm²(平方毫米),4个die的MCM封装总面积为852mm²,如果要用大型单一芯片来实现,面积可以缩小到777mm²,大约节省10%,但是制造和测试成本要提高约40%,完全32核的收益下降约17%、成本提高约70%。投入产出比当然非常划算,也变相的说出了大英的苦衷——可是,后者为什么还在坚持单片路线呢?

MCM这种完全对称的模块化方案,如果套用到数据中心领域,相当于一个园区,几栋建筑结构和功能完全一样,都包含了机房、变配电、柴发、冷站、办公和接待区域等。好处当然是彼此之间没有硬性依赖,每栋建筑都可以独立作为数据中心使用,照此复制就可成倍扩大规模;缺点是没有其他类型的建筑,而有些功能还是需要专门的建筑集中和分区管理的,譬如人员办公和统一接待……

如果一个数据中心园区只有黄框里这一种建筑(模块)……实际上,加上左边的66KV变电站,这里也只是整个园区的一角

况且,与绝大多数的数据中心园区不同,CPU对各模块之间的耦合度要求高得多,否则无法作为一个整体来运作,分工合作快速完成数据处理等任务。而这,正是MCM方案的局限性所在。

第一代EPYC的每个CCD都有“自己的”内存和I/O(主要是PCIe)通道,加上CCD之间的互连,每个CCD的外部I/O都很“重度”

多芯片(对称)设计、全“分布式”架构的特点是内存和I/O扩展能力与CCD数量同步,随着核芯数量的增加,内存和I/O的总“容量”(包括带宽)会增加,这当然是优点,但缺点也随之而来:

首先是局部性(locality)会降低I/O的性能,主要是跨CCD的内存访问时延(latency)明显上升。因为每组(2个)CCX都有自己的本地内存,如果要访问其他CCD上连接的内存,要额外花费很多时间,即所谓的NUMA(Non-Uniform Memory Access,非一致性内存访问)。虽然Zen的CCD上有足够多的IFOP,让4个CCD之间能组成全连接(full-mesh),无需经其他CCD跳转(类似于CCX内4个核芯之间的状况),但I/O路径毕竟变长了;如果要访问其他CPU(插槽)连接的内存,还要经过IFIS,时延会进一步上升。

CCD里的两个CCX也通过Infinity Fabric连接,同样会增加跨CCX的Cache访问时延

根据AMD提供的数据,不同内存访问的时延水平大致如下:

随着访问路径变长和复杂,时延以大约一半的比例增加,这个幅度还是很明显的。

同一个CCD里的内存访问没有明显差异,而跨CCD的内存访问,时延增加就很明显了

然后是PCIe,前面已经有图说明,Zen用于CPU之间互连的IFIS与PCIe通道是复用的,即单路(单CPU)的情况下全都用于PCIe通道,共有128个;双路(双CPU)的情况下每个CPU都要拿出一半来作为(两者之间的)IFIS,所以(对外的)PCIe通道数量仍然是128个,没有随着CPU数量的增加而增长。

简单归纳一下,Zen架构的问题是:核数越多,内存访问的一致性越差;CPU数量增加,外部I/O的扩展能力不变——NUMA引发的跨CPU访问时延增长问题还更严重。

单CPU就能提供128个PCIe 30通道原本是第一代EPYC处理器的一大优势,但双CPU仍然是这么多,就略显尴尬了

核数进一步增加的困难很大,不论是增加每个CCD的核数,还是增加CCD的数量,都要面临互连的复杂度问题,也会进一步恶化一致性。

说得更直白一些,就是Zen架构的扩展能力比较有限,难以支持更大的规模。

既然双路配置有利有弊,AMD又是时隔多年重返服务器市场,单路一度被认为是EPYC的突破口,譬如戴尔(Dell)在2018年初推出三款基于第一代EPYC的PowerEdge服务器,其中就有两款是单路。

1U的R6415和2U的R7415都是单路服务器

类似的情况在通常用不到那么多核及I/O扩展能力的PC市场体现得更为明显,在只需要一到两个CCD即可的情况下,消费者更多感受到的是低成本带来的高性价比,所以“AMD Yes!”的鼓噪主要来自个人用户,服务器市场在等待EPYC的进一步成熟。

只有1个die的Ryzen将Zen架构的缺点最小化,获得个人用户的喜爱也就不足为奇了

Chiplet:异构混合模块化的是与非

时隔两年之后,AMD推出基于Zen 2架构的第二代EPYC处理器,通过架构与制程一体优化,达到最高64核、256 MiB L3 Cache,分别是第一代EPYC的2倍和4倍,内存访问一致性和双路的扩展性也有不同程度的改善,终于获得了一众云服务提供商(CSP)的青睐。

Zen 2的整体设计思维是Zen的延续,但做了很多明显的改进,配合制程(部分)升级到7nm,突破了Zen和Zen+在规模扩展上的限制。

首先,Zen2架构延续了Zen/Zen+架构每个CCD有2个CCX、每个CCX有4个核芯共享L3 Cache的布局,但是每个核芯的L3 Cache增大一倍,来到4MiB,每个CCX有16 MiB L3 Cache,是Zen/Zen+架构的两倍。

CCD层面的主要变化是把DDR内存、对外的Infinity Fabric(IFOP/IFIS)和PCIe控制器等I/O器件剥离,以便于升级到7nm制程。AMD表示,第一代EPYC中,上述I/O器件占CCD芯片面积的比例达到44%,从制程提高到7nm中获益很小;而第二代EPYC的7nm CCD中,CPU和L3 Cache这些核心计算、存储器件的占比,高达86%,具有很好的经济性。

被从CCD中拿出来的DDR内存控制器、Infinity Fabric和PCIe控制器等I/O器件,组成了一个单独的I/O芯片,即I/O Die,简称IOD,仍然采用成熟的14nm工艺。

自左至右,分别是传统单片式、第一代EPYC的MCM、第二代EPYC的Chiplet三种架构的示意图

一个IOD居中,最多8个CCD围绕着它,AMD把这种做法称为Chiplet(小芯片)。

如果继续拿数据中心的模块化来强行类比,相当于把整个园区内的变电站、柴发、冷站、办公和接待区域都整合到一个建筑里,位于园区中央,周围是构造完全相同的一座座机房楼……你说,这样一个所有机房楼都离不开的建筑,该有多重要?

仅从布局看,和第二代EPYC处理器有点像的数据中心,但变电站在园区外,制冷也是分布式的(与4个机房模块在一起),中间的建筑并没有上面设想的那么重要

第一代EPYC处理器(Naples)与第二代EPYC处理器(Rome)的片上布局对比,后者是1个IOD + 8个CCD,共9个小芯片组成的混合多die设计

因为CCD的数量增加一倍,所以Rome的核数可以达到Naples的两倍;因为每个CCX/CPU核芯的L3 Cache容量也增加了一倍,所以Rome的L3 Cache总容量可以达到Naples的四倍。

14nm IOD + 7nm CCD的组合——因为不是全部升级到7nm,所以我更愿意称之为制程的“优化”——体现了更高的扩展性和灵活性,使第二代EPYC能够以较低的制造成本提供更丰富的产品组合,提高了市场竞争力。但是,事情并没有看起来这么简单,要了解产品的具体构成和预期的性能表现,您还需要继续往下看。

2019年8月,第二代EPYC正式发布后不久,AMD在Hot Chips大会上介绍了Zen 2产品的Chiplet设计。可能是之前有Zen+架构采用12nm制程的缘故吧,IOD的制程被写成了12nm,其他场合的官方材料都是14nm,所以我们还是以后者为准

今年2月IEEE的ISSCC(International Solid-State Circuits Conference,国际固态电路峰会)2020上,AMD更详细的介绍了Zen 2这一代产品的设计。结合前一幅图可以看到,第二代EPYC的IOD具有834亿晶体管,数量与同样采用14nm制程的英特尔Skylake/Cascade Lake相当——虽然两者的晶体管类型构成有很大差别,但可以作为一个参照,说明这个IOD自身的规模和复杂度。

从红框中的选项来看,EPYC 7302 CPU有4个CCD,每个CCX有2个核芯,可以选择各启用1个

IOD集中所有I/O器件的一个好处是,CPU能提供的内存通道数量与CCD的数量无关。E企实验室前一阵测试了基于第二代EPYC处理器的Dell PowerEdge R7525服务器,送测配置包括2个AMD EPYC 7302处理器,从PowerEdge R7525的BIOS设置中可以看到,这款16核的CPU有4个CCD(而不是8个),应该对应下图中右二的情形:

上方柱状图是AMD列出7+14nm Chiplet方案与假设的单片7nm方案相比,成本优势可以达到一半以上(64核没有假设,可能是指单片式很难制造);下方从左至右依次是8、6、4、2个CCD的布局,原则是尽可能的对称

虽然7302在EPYC 7002系列产品中定位偏低端,只有16个核芯,用4个CCX就能满足,但是它拥有128MiB的L3 Cache,这又需要8个CCX才可以。因此,7302的每个CCX只有2个核芯,享受原本属于4个核芯的16 MiB L3 Cache。

从EPYC 7002系列的配置表中可以看出,7302下面72开头的产品才是真正的低端,譬如同样是16核的7282,不仅L3 Cache容量只有7302的一半(倒是符合每核4 MiB的“标配”),而且仅支持4个内存通道,也是7302等产品的一半——说明其CCD数量是2个,就像前一幅图右下方所示的情况——4个内存通道配置的运行频率也低,只有DDR4-2667,与标准的8通道DDR4-3200相比,理论内存带宽仅为40%多

Dell PowerEdge R7525用户手册里对内存条的安装位置有很详细的说明,毕竟插满8个内存通道和只用4个内存通道,性能差距太大

IOD集中所有I/O对性能也有好处,因为内存控制器集中在一个芯片上,有助于降低内存访问的局部性(NUMA)。不过,AMD在很多场合放出的示意图很有误导性,容易让人以为,对Rome(下图右侧)来说,同一个CPU上的内存访问是不存在NUMA的。

从上面的数据来看,第二代EPYC处理器的“本地”内存访问时延有所增长,毕竟内存控制器和CCX不在一个die上了;收益是跨CPU内存访问的时延有所下降,总体更为平均

好在,稍微详细一点的架构示意图表明,一个EPYC 7002系列CPU内部的内存访问仍然会有“远近”之分:

Dell PowerEdge R7525的BIOS配置中,可以在L3 Cache的NUMA设置为Enabled之后,看到每个CPU内部其实还是可以像EPYC 7001系列一样,分成4个不同的NUMA区域

这时学术性会议的价值就体现出来。AMD在ISSCC 2020上的演讲表明,完整版的Server IOD要承载的功能太多,已经有太多的晶体管,中间都被Infinity Fabric和PCIe相关的I/O所占据,内存控制器只能两两一组布置在IOD的四角,每2个CCD就近共享2个内存控制器。由于中间已经没有走线空间,只能构成一个没有对角线连接的2D-mesh拓扑——仅从拓扑角度而论,还不如EPYC 7001系列4个CCD的full-mesh连接方式。所以,临近的访问有长短边造成的延迟差异,对角线的内存访问因为要走过一长一短两条边,没有捷径可走,自然要更慢一些。

注意放大看IOD布局示意图和右侧1~4的不同等级时延注解,可以理解为每个CPU内部仍然分为4个NUMA区域:本地、短边、长边、(拐个弯才能抵达的)对角线

Hot Chips大会上的这张示意图突出了不同功能的Infinity Fabric导致的IOD中部拥挤,和DDR内存控制器都被挤到边角上的感觉。结合前一张图,不难理解,像EPYC 7282这样只有2个CCD对角线布置的低端SKU,另一条对角线上的4个DDR内存控制器主要起增加内存容量的作用,不如只保留CCD就近的4个内存通道

总之,不管是EPYC 7001系列的MCM,还是EPYC 7002系列的Chiplet,随着芯片数量的增长,性能肯定会受到越来越明显的影响(而不是近乎线性的同步提升),只是好的架构会延缓总体性能增长的衰减速度。

这里我们可以回过头来看看同样基于Zen 2架构的第三代AMD Ryzen处理器,主流PC产品没有那么多核数要求,只用2个CCD即可满足,所以其配套的Client IOD(cIOD)正好是Server IOD的四分之一,从前面图中晶体管数量的对比(209亿 vs 834亿)也可以看出来。

代号“Matisse”的第三代Ryzen,仍然可以看到两个DDR4内存控制器偏居一隅的“遗存”,但对两个CCD已经公平了很多,基本不存在NUMA问题。也就难怪“AMD真香”党在消费类用户中比例要大得多

尽管CCD升级到了7nm,但更多核芯、更大得多的L3 Cache,意味着整体功耗的上升,譬如同样16核的7302和7282,前者Cache大一倍,频率略有提高,默认TDP就来到了155W,Dell为送测的R7525配备了180W的散热器——而EPYC 7282的TDP则“只有”120/150W。当然,CCD应用7nm的效果还是比较明显的,同样16核、L3 Cache只有7302四分之一,运行频率还低500MHz的7301,TDP也有150/170W,基本与7302相当。

为了满足云计算、高性能计算(HPC)和虚拟化等场景的用户需求,AMD又向EPYC 7002系列CPU中增加了大量多核大(L3) Cache以及核数虽少但频率很高的型号(如今年初发布的7Fx2系列),导致全系列产品中TDP在200W以上的SKU占比很高,也给服务器的散热设计带来了更高的挑战。

200W+的CPU将越来越常见

EPYC 7002系列的另一大改进是PCIe从30升级到40,单路仍然是128个通道,但双路可以支持多达160个通道(譬如Dell PowerEdge R7525的特定配置)——在主板支持的情况下。第一代EPYC处理器推出时的一个卖点是,为其设计的主板也可以支持第二代EPYC处理器。没有广而告之的是,要支持PCIe 40,主板需要重新设计。用老主板可以更快的把第二代EPYC处理器推向市场,却不能充分发挥新CPU的全部能力。

不过,PCIe 40本身就是一个很大的话题,留待以后(有机会的话)专文讨论。


AMD电脑主机(也称为AMD主板)与AMD处理器有关系,但它们并不是同一个部件或品牌。
AMD是一个半导体公司,主要生产CPU(中央处理器)、GPU(图形处理器)和APU(集成了CPU和GPU的处理器)等处理器产品。早期的AMD处理器与Intel竞争激烈,一度在市场上占据领先地位。
而AMD电脑主机是一种主板,也是一种电脑硬件设备,用于安装和连接各种其他的硬件设备,例如处理器、内存、显卡、存储设备等。AMD电脑主机通常使用AMD芯片组,这些芯片组与AMD处理器的兼容性更好,可以提供更好的性能和稳定性。
因此,AMD电脑主机和AMD处理器有关系,但它们不是同一个品牌或部件。AMD电脑主机可以与其他品牌的CPU兼容,而AMD处理器也可以安装在其他品牌的主板上。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10618547.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存