在车载系统中,除了与行车 *** 控密切相关的车体、传动及安全系统开始导入更多的电子功能外,资通娱乐系统也越来越多地应用电子技术。当这个结合信息、通信和娱乐的车载应用系统被转移到汽车市场时,也发展出其独到的应用特点。
Telematics是指整合通信与信息的新兴车载应用。在产品定位上,可以分为可携式设备和车装式设备两种。GPS导航定位在Telematics中具有关键性的地位,车载GPS系统除了可为驾驶提供导航信息外,当它与无线通信技术(如GPRS/3G)结合时,可提供定位信息给Telematics的服务供货商,当这些供货商的服务中心收到个别汽车的位置信息后,就能够为车主提供道路救援、失车找回等服务。另外,出租车、公交车或游览车也可采用GPS来发挥车队追踪及控管的功能。在客户端的GPS装置是一个单向的GPS信号接收机,它可以接收来自天空导航卫星的定位信号,这20多颗卫星可传送L1及L2两种信号,使用的频率分别为157542MHz和122760MHz,一般民用的GPS接收机只需接收L1于157542MHz的频率。
GPS定位系统利用卫星基本三角定位原理,由GPS接收装置先找到3颗以上空中卫星的所在位置,再计算每颗卫星与接收器之间的距离,即可得出接收器在三维空间中的坐标值。
进一步来看GPS接收器的系统运作流程(见图1),GPS卫星信号先由GPS天线来接收,再经由RF射频前端将高频信号转为中、低频数字信号,再传送到GPS基频组件,此组件的核心技术在于相关器的设计,也就是透过相关器来比对找出正确的卫星编号,进而对照取得多颗卫星的万年历和广播星历等资料。通道的相关器越多意味着找到卫星位置的速度越快,目前一般的GPS接收器至少提供12个通道的相关器,更高阶的接收器则具有16个,甚至是32个通道的相关器。
GPS接收器的控制功能由微处理器或微控制器来实现,此处理核心可以来自外部,也可嵌入在GPS基频组件当中。目前较初阶的GPS接收器产品常用ARM7作为核心,高阶的机种则会升级到ARM9核心。此外,这类组件也具备微处理器支持功能,例如UART和实时时钟(RTC)。
星历数据会以NMEA0183或RTCM等格式输出到主处理器,进一步与GIS地图引擎整合以显示所在街道位置,或透过无线通信接口传出位置信息,让远程服务器能够提供进一步的相关位置服务。NMEA0183是GPS惯用的一种标准通信协议,它采用简化ASCII的序列通信协议来定义数据传送的格式。当GPS采用差分定位(DGPS)的辅助定位模式,如美国的WAAS或欧洲的EGNOS系统时,则需输出RTCM或NTRIP10的协议格式。此外,由于不同的接收器所提供的原始数据格式通常会不同,当有需要针对不同型号接收器收集的数据进行统一处理时,就必须建立GPS通用数据交换格式。综上所述,一部车载GPS的硬件系统架构中,主要单元包括天线、RF前端、基频/相关器、处理器核心,此外,还包括内存、总线接口。这些单元可以采用离散式的方法来提高设计上的d性,也可采用整合式的策略,将多个单元整合为一颗系统单芯片(SoC)、单封装(SiP)或模块,以降低设计的难度及成本。
当系统工程师在进行设计时,必须在效能、成本与d性三大评量要件中进行选择。以效能来说,GPS接收器的效能指标有4项,分别是准确性、灵敏度、第一次定位时间、通道数量。当这4项效能指标都要求达到最高时,就必须强调接收器的处理器效能、相关器通道数量、内存容量及高速的对外连接接口。如此一来,产品的成本自然会大幅提升,这时大众市场未必能够接受,因此往往需要做一些必要的调整。
目前的技术已能够将GPS接收器架构中的射频及基频整合在一起,而高整合度的产品能提供更佳的成本效益。以ST的STA2056为例(见图2),它将基频与射频功能整合于小型的QFN-68封装之中。它在基频部分采用ARM7TDMI作为核心,频率可高达66MHz;在射频部分为主动天线系统,含有易与被动天线连接的接口;此外,它还内建ROM及SRAM内存。由于只需要用到少数的外部组件,因此能降低总体物料成本;其小尺寸能让产品设计更为轻薄短小,而且具有低功耗的优势。不仅如此,此类整合性产品也让工程师省下调校射频与基频整合的研究精力,可加速产品上市。GPS天线也是决定GPS效能表现的关键。GPS卫星信号的背景噪讯为-136dBW,为避免干扰,国际电信法规规定卫星传送信号噪讯不得大于-154dBW,GPS的信号实际上相当弱,因此接收天线的灵敏度必须非常高。这和天线的大小及形状密切相关。可用于GPS的天线种类包括片状天线、螺旋式天线和平面倒F型天线(PIFA)等,其中又以片状天线和螺旋式天线使用最多(见图4)。由于GPS的信号属于圆极化波,所以GPS接收天线也必须采用圆极化的工作方式。
平板天线的好处是其耐用性及相对容易制作,成本也较低,不过它具有明显的方向性,平板要面向天空才能得到较好的接收效果。这种方向性会给使用上带来极大的限制;此外,它虽然能顺利接收到正上方的卫星信号,但若没有获取到低角度的卫星信息,误差就会相对较高,精确度也会下降。
较先进的做法是采用四臂螺旋天线,它拥有全面向360°的接收能力,使天线在任何方向都有3dB的增益。这让GPS接收器能以各种角度摆放,而且能接收到低角度的卫星信号。此外,也可导入Balun的电路设计,这样可以有效隔离天线周围的噪讯,能容纳各种功能的天线并存于极小的空间中而不会互相干扰,很适合手持设备的天线设计,不过此类天线的成本仍然偏高。在车载的导航使用中,常会因为遭遇到环境上的遮蔽因素而造成导航工作无法正常运作。在高楼林立的巷道中,收信状况往往极差,当行进隧道中时,更是完全没有信号可用,这时可以透过方位推估(DeadReckoning,DR)技术来作为暂时的导航工具。
DR的技术原理是透过能感测或测量距离及方向改变的装置,来估算出汽车移动位置的改变。正向的行进距离通常采用量程计或加速度计来进行量测;转动角度则使用磁罗盘、陀螺仪或差分里程计来量测;高度上的变化则需使用气压计。整合设计实例见图5。
里程计是每台汽车中必备的装置,GPS接收器可透过CANBus来连接里程计以进行测量,但里程计的缺点是会因使用时间过长导致准确性降低。较先进的做法是采用MEMS技术的加速度计和陀螺仪,它们的体积小,也容易进行系统整合,但是,精确度高的MEMS组件也需要较高的成本。此外,在实际应用中要提升DR系统的精确性,还要时常进行在线传感器的校准,这时就需要GPS的定位信号来修正DR传感器的参数项目。
在短时间内,DR的正确性相当高,甚至可以高于GPS,但随着使用时间的增加,DR的误差累积效应会越来越大,导航的精确度就会大幅下降,这时必须回归到GPS系统来找出绝对的位置,才能再次使用DR。DR和GPS是相辅相成的车载导航系统,但目前商品化的产品仍然不多,主要的瓶颈在于DR传感器的准确度和成本,以及与导航系统整合的算法开发方面。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)