如何安装配置基于2台服务器的MySQL集群

如何安装配置基于2台服务器的MySQL集群,第1张

Servers1和Server2作为实际配置MySQL集群的服务器。
对于作为管理节点的Server3则要求较低,只需对Server3的系统进行很小的调整并且无需安装MySQL,Server3可以使用一台配置较低的计算机并且可以在Server3同时运行其他服务。

通常,为了提高网站响应速度,总是把热点数据保存在内存中而不是直接从后端数据库中读取。Redis是一个很好的Cache工具。大型网站应用,热点数据量往往巨大,几十G上百G是很正常的事儿,在这种情况下,如何正确架构Redis呢?
首先,无论我们是使用自己的物理主机,还是使用云服务主机,内存资源往往是有限制的,scale up不是一个好办法,我们需要scale out横向可伸缩扩展,这需要由多台主机协同提供服务,即分布式多个Redis实例协同运行。
其次,目前硬件资源成本降低,多核CPU,几十G内存的主机很普遍,对于主进程是单线程工作的Redis,只运行一个实例就显得有些浪费。同时,管理一个巨大内存不如管理相对较小的内存高效。因此,实际使用中,通常一台机器上同时跑多个Redis实例。
方案
1Redis官方集群方案 Redis Cluster
Redis Cluster是一种服务器Sharding技术,30版本开始正式提供。
Redis
Cluster中,Sharding采用slot(槽)的概念,一共分成16384个槽,这有点儿类似前面讲的pre
sharding思路。对于每个进入Redis的键值对,根据key进行散列,分配到这16384个slot中的某一个中。使用的hash算法也比较简
单,就是CRC16后16384取模。
Redis集群中的每个node(节点)负责分摊这16384个slot中的一部分,也就是说,每个
slot都对应一个node负责处理。当动态添加或减少node节点时,需要将16384个槽做个再分配,槽中的键值也要迁移。当然,这一过程,在目前实
现中,还处于半自动状态,需要人工介入。
Redis集群,要保证16384个槽对应的node都正常工作,如果某个node发生故障,那它负责的slots也就失效,整个集群将不能工作。

了增加集群的可访问性,官方推荐的方案是将node配置成主从结构,即一个master主节点,挂n个slave从节点。这时,如果主节点失
效,Redis Cluster会根据选举算法从slave节点中选择一个上升为主节点,整个集群继续对外提供服务。这非常类似前篇文章提到的Redis
Sharding场景下服务器节点通过Sentinel监控架构成主从结构,只是Redis Cluster本身提供了故障转移容错的能力。
Redis
Cluster的新节点识别能力、故障判断及故障转移能力是通过集群中的每个node都在和其它nodes进行通信,这被称为集群总线(cluster

bus)。它们使用特殊的端口号,即对外服务端口号加10000。例如如果某个node的端口号是6379,那么它与其它nodes通信的端口号是
16379。nodes之间的通信采用特殊的二进制协议。
对客户端来说,整个cluster被看做是一个整体,客户端可以连接任意一个
node进行 *** 作,就像 *** 作单一Redis实例一样,当客户端 *** 作的key没有分配到该node上时,Redis会返回转向指令,指向正确的node,这
有点儿像浏览器页面的302 redirect跳转。
Redis Cluster是Redis 30以后才正式推出,时间较晚,目前能证明在大规模生产环境下成功的案例还不是很多,需要时间检验。
2Redis Sharding集群
Redis 3正式推出了官方集群技术,解决了多Redis实例协同服务问题。Redis Cluster可以说是服务端Sharding分片技术的体现,即将键值按照一定算法合理分配到各个实例分片上,同时各个实例节点协调沟通,共同对外承担一致服务。
多Redis实例服务,比单Redis实例要复杂的多,这涉及到定位、协同、容错、扩容等技术难题。这里,我们介绍一种轻量级的客户端Redis Sharding技术。
Redis
Sharding可以说是Redis
Cluster出来之前,业界普遍使用的多Redis实例集群方法。其主要思想是采用哈希算法将Redis数据的key进行散列,通过hash函数,特定
的key会映射到特定的Redis节点上。这样,客户端就知道该向哪个Redis节点 *** 作数据。Sharding架构如图:
庆幸的是,java redis客户端驱动jedis,已支持Redis Sharding功能,即ShardedJedis以及结合缓存池的ShardedJedisPool。
Jedis的Redis Sharding实现具有如下特点:

用一致性哈希算法(consistent
hashing),将key和节点name同时hashing,然后进行映射匹配,采用的算法是MURMUR_HASH。采用一致性哈希而不是采用简单类
似哈希求模映射的主要原因是当增加或减少节点时,不会产生由于重新匹配造成的rehashing。一致性哈希只影响相邻节点key分配,影响量小。
2
为了避免一致性哈希只影响相邻节点造成节点分配压力,ShardedJedis会对每个Redis节点根据名字(没有,Jedis会赋予缺省名字)会虚拟
化出160个虚拟节点进行散列。根据权重weight,也可虚拟化出160倍数的虚拟节点。用虚拟节点做映射匹配,可以在增加或减少Redis节点
时,key在各Redis节点移动再分配更均匀,而不是只有相邻节点受影响。
3ShardedJedis支持keyTagPattern模式,即抽取key的一部分keyTag做sharding,这样通过合理命名key,可以将一组相关联的key放入同一个Redis节点,这在避免跨节点访问相关数据时很重要。
Redis Sharding采用客户端Sharding方式,服务端Redis还是一个个相对独立的Redis实例节点,没有做任何变动。同时,我们也不需要增加额外的中间处理组件,这是一种非常轻量、灵活的Redis多实例集群方法。
当然,Redis Sharding这种轻量灵活方式必然在集群其它能力方面做出妥协。比如扩容,当想要增加Redis节点时,尽管采用一致性哈希,毕竟还是会有key匹配不到而丢失,这时需要键值迁移。
作为轻量级客户端sharding,处理Redis键值迁移是不现实的,这就要求应用层面允许Redis中数据丢失或从后端数据库重新加载数据。但有些时候,击穿缓存层,直接访问数据库层,会对系统访问造成很大压力。有没有其它手段改善这种情况?
Redis
作者给出了一个比较讨巧的办法--presharding,即预先根据系统规模尽量部署好多个Redis实例,这些实例占用系统资源很小,一台物理机可部
署多个,让他们都参与sharding,当需要扩容时,选中一个实例作为主节点,新加入的Redis节点作为从节点进行数据复制。数据同步后,修改
sharding配置,让指向原实例的Shard指向新机器上扩容后的Redis节点,同时调整新Redis节点为主节点,原实例可不再使用。
presharding
是预先分配好足够的分片,扩容时只是将属于某一分片的原Redis实例替换成新的容量更大的Redis实例。参与sharding的分片没有改变,所以也
就不存在key值从一个区转移到另一个分片区的现象,只是将属于同分片区的键值从原Redis实例同步到新Redis实例。
并不是只有增
删Redis节点引起键值丢失问题,更大的障碍来自Redis节点突然宕机。在《Redis持久化》一文中已提到,为不影响Redis性能,尽量不开启
AOF和RDB文件保存功能,可架构Redis主备模式,主Redis宕机,数据不会丢失,备Redis留有备份。
这样,我们的架构模式变
成一个Redis节点切片包含一个主Redis和一个备Redis。在主Redis宕机时,备Redis接管过来,上升为主Redis,继续提供服务。主
备共同组成一个Redis节点,通过自动故障转移,保证了节点的高可用性。则Sharding架构演变成:
Redis Sentinel提供了主备模式下Redis监控、故障转移功能达到系统的高可用性。
高访问量下,即使采用Sharding分片,一个单独节点还是承担了很大的访问压力,这时我们还需要进一步分解。通常情况下,应用访问Redis读 *** 作量和写 *** 作量差异很大,读常常是写的数倍,这时我们可以将读写分离,而且读提供更多的实例数。
可以利用主从模式实现读写分离,主负责写,从负责只读,同时一主挂多个从。在Sentinel监控下,还可以保障节点故障的自动监测。
3利用代理中间件实现大规模Redis集群
上面分别介绍了多Redis服务器集群的两种方式,它们是基于客户端sharding的Redis Sharding和基于服务端sharding的Redis Cluster。
客户端sharding技术其优势在于服务端的Redis实例彼此独立,相互无关联,每个Redis实例像单服务器一样运行,非常容易线性扩展,系统的灵活性很强。其不足之处在于:
由于sharding处理放到客户端,规模进步扩大时给运维带来挑战。
服务端Redis实例群拓扑结构有变化时,每个客户端都需要更新调整。
连接不能共享,当应用规模增大时,资源浪费制约优化。
服务端sharding的Redis Cluster其优势在于服务端Redis集群拓扑结构变化时,客户端不需要感知,客户端像使用单Redis服务器一样使用Redis集群,运维管理也比较方便。
不过Redis Cluster正式版推出时间不长,系统稳定性、性能等都需要时间检验,尤其在大规模使用场合。
能不能结合二者优势?即能使服务端各实例彼此独立,支持线性可伸缩,同时sharding又能集中处理,方便统一管理?本篇介绍的Redis代理中间件twemproxy就是这样一种利用中间件做sharding的技术。
twemproxy处于客户端和服务器的中间,将客户端发来的请求,进行一定的处理后(如sharding),再转发给后端真正的Redis服务器。也就是说,客户端不直接访问Redis服务器,而是通过twemproxy代理中间件间接访问。
参照Redis Sharding架构,增加代理中间件的Redis集群架构如下:
twemproxy中间件的内部处理是无状态的,它本身可以很轻松地集群,这样可避免单点压力或故障。
twemproxy又叫nutcracker,起源于twitter系统中redis/memcached集群开发实践,运行效果良好,后代码奉献给开源社区。其轻量高效,采用C语言开发,工程网址是:GitHub - twitter/twemproxy: A fast, light-weight proxy for memcached and redis
twemproxy后端不仅支持redis,同时也支持memcached,这是twitter系统具体环境造成的。
由于使用了中间件,twemproxy可以通过共享与后端系统的连接,降低客户端直接连接后端服务器的连接数量。同时,它也提供sharding功能,支持后端服务器集群水平扩展。统一运维管理也带来了方便。
当然,也是由于使用了中间件代理,相比客户端直连服务器方式,性能上会有所损耗,实测结果大约降低了20%左右。

在服务器群集产品中含有用来在服务器上安装群集软件和创建新群集的群集安装实用工具。创建新群集时,首先在选择作为群集的第一个成员的计算机上运行该实用工具。第一步是确定群集名称并创建群集数据库和初始的群集成员列表来定义新群集。具体的你可以找一些IDC人员询问,你可以找下哈唐网络解决这问题。

集群和负载均衡的区别如下:
1、集群(Cluster)
所谓集群是指一组独立的计算机系统构成的一个松耦合的多处理器系统,它们之间通过网络实现进程间的通信应用程序可以通过网络共享内存进行消息传送,实现分布式计算机
2、负载均衡(Load Balance)
网络的负载均衡是一种动态均衡技术,通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理均衡地分配出去这种技术基于现有网络结构,提供了一种扩展服务器带宽和增加服务器吞吐量的廉价有效的方法,加强了网络数据处理能力,提高了网络的灵活性和可用性
3、特点
(1)高可靠性(HA)利用集群管理软件,当主服务器故障时,备份服务器能够自动接管主服务器的工作,并及时切换过去,以实现对用户的不间断服务
(2)高性能计算(HP)即充分利用集群中的每一台计算机的资源,实现复杂运算的并行处理,通常用于科学计算领域,比如基因分析化学分析等
(3)负载平衡即把负载压力根据某种算法合理分配到集群中的每一台计算机上,以减轻主服务器的压力,降低对主服务器的硬件和软件要求
LVS系统结构与特点
1 Linux Virtual Server:简称LVS是由中国一个Linux程序员章文嵩博士发起和领导的,基于Linux系统的服务器集群解决方案,其实现目标是创建一个具有良好的扩展性高可靠性高性能和高可用性的体系许多商业的集群产品,比如RedHat的Piranha Turbo Linux公司的Turbo Cluster等,都是基于LVS的核心代码的
2 体系结构:使用LVS架设的服务器集群系统从体系结构上看是透明的,最终用户只感觉到一个虚拟服务器物理服务器之间可以通过高速的 LAN或分布在各地的WAN相连最前端是负载均衡器,它负责将各种服务请求分发给后面的物理服务器,让整个集群表现得像一个服务于同一IP地址的虚拟服务器
3 LVS的三种模式工作原理和优缺点: Linux Virtual Server主要是在负载均衡器上实现的,负载均衡器是一台加了 LVS Patch的22x版内核的Linux系统LVS Patch可以通过重新编译内核的方法加入内核,也可以当作一个动态的模块插入现在的内核中

很多组织机构慢慢的在不同的服务器和地点部署SQL Server数据库——为各种应用和目的——开始考虑通过SQL Server集群的方式来合并。
将SQL Server实例和数据库合并到一个中心的地点可以减低成本,尤其是维护和软硬件许可证。此外,在合并之后,可以减低所需机器的数量,这些机器就可以用于备用。
当寻找一个备用,比如高可用性的环境,企业常常决定部署Microsoft的集群架构。我常常被问到小的集群(由较少的节点组成)SQL Server实例和作为中心解决方案的大的集群哪一种更好。在我们比较了这两个集群架构之后,我让你们自己做决定。
什么是Microsoft集群服务器
MSCS是一个Windows Server企业版中的内建功能。这个软件支持两个或者更多服务器节点连接起来形成一个“集群”,来获得更高的可用性和对数据和应用更简便的管理。MSCS可以自动的检查到服务器或者应用的失效,并从中恢复。你也可以使用它来(手动)移动服务器之间的负载来平衡利用率以及无需停机时间来调度计划中的维护任务。
这种集群设计使用软件“心跳”来检测应用或者服务器的失效。在服务器失效的事件中,它会自动将资源(比如磁盘和IP地址)的所有权从失效的服务器转移到活动的服务器。注意还有方法可以保持心跳连接的更高的可用性,比如站点全面失效的情况下。
MSCS不要求在客户计算机上安装任何特殊软件,因此用户在灾难恢复的经历依赖于客户-服务器应用中客户一方的本质。客户的重新连接常常是透明的,因为MSCS在相同的IP地址上重启应用、文件共享等等。进一步,为了灾难恢复,集群的节点可以处于分离的、遥远的地点。
在集群服务器上的SQL Server
SQL Server 2000可以配置为最多4个节点的集群,而SQL Server 2005可以配置为最多8个节点的集群。当一个SQL Server实例被配置为集群之后,它的磁盘资源、IP地址和服务就形成了集群组来实现灾难恢复。
SQL Server 2000允许在一个集群上安装16个实例。根据在线帮助,“SQL Server 2005在一个服务器或者处理器上可以支持最多50个SQL Server实例,”但是,“只能使用25个硬盘驱动器符,因此如果你需要更多的实例,那么需要预先规划。”
注意SQL Server实例的灾难恢复阶段是指SQL Server服务开始所需要的时间,这可能从几秒钟到几分钟。如果你需要更高的可用性,考虑使用其他的方法,比如log shipping和数据库镜像。
单个的大的SQL Server集群还是小的集群
下面是大的、由更多的节点组成的集群的优点:
◆更高的可用新(更多的节点来灾难恢复)。
◆更多的负载均衡选择(更多的节点)。
◆更低廉的维护成本。
◆增长的敏捷性。多达4个或者8个节点,依赖于SQL版本。
◆增强的管理性和简化环境(需要管理的少了)。
◆更少的停机时间(灾难恢复更多的选择)。
◆灾难恢复性能不受集群中的节点数目影响。
下面是单个大的集群的缺点:
◆集群节点数目有限(如果需要第9个节点怎么办)。
◆在集群中SQL实例数目有限。
◆没有对失效的防护——如果磁盘阵列失效了,就不会发生灾难恢复。
◆使用灾难恢复集群,无法在数据库级别或者数据库对象级别,比如表,创建灾难恢复集群。
虚拟化和集群
虚拟机也可以参与到集群中,虚拟和物理机器可以集群在一起,不会发生问题。SQL Server实例可以在虚拟机上,但是性能可能会受用影响,这依赖于实例所消耗的资源。在虚拟机上安装SQL Server实例之前,你需要进行压力测试来验证它是否可以承受必要的负载。
在这种灵活的架构中,如果虚拟机和物理机器集群在一起,你可以在虚拟机和物理机器之间对SQL Server进行负载均衡。比如,使用虚拟机上的SQL Server实例开发应用。然后在你需要对开发实例进行压力测试的时候,将它灾难恢复到集群中更强的物理机器上。
集群服务器可以用于SQL Server的高可用性、灾难恢复、可扩展性和负载均衡。单个更大的、由更多的节点组成的集群往往比小的、只有少数节点的集群更好。大个集群允许更灵活环境,为了负载均衡和维护,实例可以从一个节点移动到另外的节点。

参考Ceph官方安装文档

Openstack环境中,数据存储可分为临时性存储与永久性存储。

临时性存储:主要由本地文件系统提供,并主要用于nova虚拟机的本地系统与临时数据盘,以及存储glance上传的系统镜像;

永久性存储:主要由cinder提供的块存储与swift提供的对象存储构成,以cinder提供的块存储应用最为广泛,块存储通常以云盘的形式挂载到虚拟机中使用。

Openstack中需要进行数据存储的三大项目主要是nova项目(虚拟机镜像文件),glance项目(共用模版镜像)与cinder项目(块存储)。

下图为cinder,glance与nova访问ceph集群的逻辑图:

ceph与openstack集成主要用到ceph的rbd服务,ceph底层为rados存储集群,ceph通过librados库实现对底层rados的访问;

openstack各项目客户端调用librbd,再由librbd调用librados访问底层rados;
实际使用中,nova需要使用libvirtdriver驱动以通过libvirt与qemu调用librbd;cinder与glance可直接调用librbd;

写入ceph集群的数据被条带切分成多个object,object通过hash函数映射到pg(构成pg容器池pool),然后pg通过几圈crush算法近似均匀地映射到物理存储设备osd(osd是基于文件系统的物理存储设备,如xfs,ext4等)。

CEPH PG数量设置与详细介绍

在创建池之前要设置一下每个OSD的最大PG 数量

PG PGP官方计算公式计算器

参数解释:

依据参数使用公式计算新的 PG 的数目:
PG 总数= ((OSD总数100)/最大副本数)/池数
3x100/3/3=3333 ;舍入到2的N次幕为32

openstack集群作为ceph的客户端;下面需要再openstack集群上进行ceph客户端的环境配置

在openstack所有控制和计算节点安装ceph Octopus源码包,centos8有默认安装,但是版本一定要跟连接的ceph版本一致

glance-api 服务运行在3个控制节点, 因此三台控制节点都必须安装

cinder-volume 与 nova-compute 服务运行在3个计算(存储)节点; 因此三台计算节点都必须安装

将配置文件和密钥复制到openstack集群各节点

配置文件就是生成的cephconf;而密钥是 cephclientadminkeyring ,当使用ceph客户端连接至ceph集群时需要使用的密默认密钥,这里我们所有节点都要复制,命令如下

※Glance 作为openstack中镜像服务,支持多种适配器,支持将镜像存放到本地文件系统,>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12811882.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存