Java是一个强类型语言,它允许扩展编译时检查潜在类型不匹配问题的功能。Java要求显式的方法声明,它不支持C风格的隐式声明。
Java可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等。
Java的特点:
Java具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点;下面我们来具体介绍一下:
1、简单性
Java看起来设计得很像C++,但是为了使语言小和容易熟悉,设计者们把C++语言中许多可用的特征去掉了,这些特征是一般程序员很少使用的。例如,Java不支持go to语句,代之以提供break和continue语句以及异常处理。Java还剔除了C++的 *** 作符过载(overload)和多继承特征,并且不使用主文件,免去了预处理程序。因为Java没有结构,数组和串都是对象,所以不需要指针。Java能够自动处理对象的引用和间接引用,实现自动的无用单元收集,使用户不必为存储管理问题烦恼,能更多的时间和精力花在研发上。
2、面向对象
Java语言提供类、接口和继承等面向对象的特性,为了简单起见,只支持类之间的单继承,但支持接口之间的多继承,并支持类与接口之间的实现机制(关键字为implements)。Java语言全面支持动态绑定,而C++语言只对虚函数使用动态绑定。总之,Java语言是一个纯的面向对象程序设计语言。
3、分布性
Java设计成支持在网络上应用,它是分布式语言。Java既支持各种层次的网络连接,又以Socket类支持可靠的流(stream)网络连接,所以用户可以产生分布式的客户机和服务器。
网络变成软件应用的分布运载工具。Java程序只要编写一次,就可到处运行。
4、编译和解释性
Java编译程序生成字节码(byte-code),而不是通常的机器码。Java字节码提供对体系结构中性的目标文件格式,代码设计成可有效地传送程序到多个平台。Java程序可以在任何实现了Java解释程序和运行系统(run-time system)的系统上运行。
在一个解释性的环境中,程序开发的标准“链接”阶段大大消失了。如果说Java还有一个链接阶段,它只是把新类装进环境的过程,它是增量式的、轻量级的过程。因此,Java支持快速原型和容易试验,它将导致快速程序开发。这是一个与传统的、耗时的“编译、链接和测试”形成鲜明对比的精巧的开发过程。
5、稳健性
Java原来是用作编写消费类家用电子产品软件的语言,所以它是被设计成写高可靠和稳健软件的。Java消除了某些编程错误,使得用它写可靠软件相当容易。
Java的强类型机制、异常处理、垃圾的自动收集等是Java程序健壮性的重要保证。对指针的丢弃是Java的明智选择。Java的安全检查机制使得Java更具健壮性。
6、安全性
Java的存储分配模型是它防御恶意代码的主要方法之一。Java没有指针,所以程序员不能得到隐蔽起来的内幕和伪造指针去指向存储器。更重要的是,Java编译程序不处理存储安排决策,所以程序员不能通过查看声明去猜测类的实际存储安排。编译的Java代码中的存储引用在运行时由Java解释程序决定实际存储地址。
Java运行系统使用字节码验证过程来保证装载到网络上的代码不违背任何Java语言限制。这个安全机制部分包括类如何从网上装载。例如,装载的类是放在分开的名字空间而不是局部类,预防恶意的小应用程序用它自己的版本来代替标准Java类。
7、可移植性
Java使得语言声明不依赖于实现的方面。例如,Java显式说明每个基本数据类型的大小和它的运算行为(这些数据类型由Java语法描述)。
Java环境本身对新的硬件平台和 *** 作系统是可移植的。Java编译程序也用Java编写,而Java运行系统用ANSIC语言编写。
8、高性能
Java是一种先编译后解释的语言,所以它不如全编译性语言快。但是有些情况下性能是很要紧的,为了支持这些情况,Java设计者制作了“及时”编译程序,它能在运行时把Java字节码翻译成特定CPU(中央处理器)的机器代码,也就是实现全编译了。
Java字节码格式设计时考虑到这些“及时”编译程序的需要,所以生成机器代码的过程相当简单,它能产生相当好的代码。
9、多线程
在Java语言中,线程是一种特殊的对象,它必须由Thread类或其子(孙)类来创建。通常有两种方法来创建线程:
1)、使用型构为Thread(Runnable)的构造子类将一个实现了Runnable接口的对象包装成一个线程,
2)、从Thread类派生出子类并重写run方法,使用该子类创建的对象即为线程。值得注意的是Thread类已经实现了Runnable接口,因此,任何一个线程均有它的run方法,而run方法中包含了线程所要运行的代码。线程的活动由一组方法来控制。Java语言支持多个线程的同时执行,并提供多线程之间的同步机制(关键字为synchronized)。
10、动态性
Java语言的设计目标之一是适应于动态变化的环境。Java程序需要的类能够动态地被载入到运行环境,也可以通过网络来载入所需要的类。这也有利于软件的升级。另外,Java中的类有一个运行时刻的表示,能进行运行时刻的类型检查。
11、平台独立性
Java程序(后缀为java的文件)在Java平台上被编译为体系结构中立的字节码格式(后缀为class的文件),然后可以在实现这个Java平台的任何系统中运行。这种途径适合于异构的网络环境和软件的分发。
private static String num="";
public static void main(String[] args) throws Exception {//主函数
int[] arr={1,2,3};//给一个数组
int count=3;//给位数
num(arr,count);//调用①
Systemoutprint(num);//输出用逗号拼接的全部数字(可以用逗号拆分,然后算长度)
}
//arr 数组, count 位数
private static void num(int[] arr,int count){//①
num(arr,count,"");//调用②
}
//递归调用
private static void num(int[] arr,int count,String str){//②
扩展资料:
使用
使用Java编写的应用程序,既可以在一台单独的电脑上运行,也可以被分布在一个网络的服务器端和客户端运行。另外,Java还可以被用来编写容量很小的应用程序模块或者applet,做为网页的一部分使用。applet可使网页使用者和网页之间进行交互式 *** 作。
构成
Java平台由Java虚拟机(Java Virtual Machine)和Java 应用编程接口(Application Programming Interface、简称API)构成。Java 应用编程接口为Java应用提供了一个独立于 *** 作系统的标准接口,可分为基本部分和扩展部分。
在硬件或 *** 作系统平台上安装一个Java平台之后,Java应用程序就可运行。现在Java平台已经嵌入了几乎所有的 *** 作系统。这样Java程序可以只编译一次,就可以在各种系统中运行。Java应用编程接口已经从11x版发展到12版。目前常用的Java平台基于Java15,最近版本为Java19。
出处
Java是Sun微系统公司在1995年推出的,推出之后马上给互联网的交互式应用带来了新面貌。目前,最常用的两种互联网浏览器软件中都包括一个Java虚拟机。几乎所有的 *** 作系统中都增添了Java编译程序。
体系
JavaSE(Java2 Platform Standard Edition,java平台标准版)。
JavaEE(Java 2 Platform,Enterprise Edition,java平台企业版)。
JavaME(Java 2 Platform Micro Edition,java平台微型版)。
语言特点
1简单性
Java看起来设计得很像C++,但是为了使语言小和容易熟悉,设计者们把C++语言中许多可用的特征去掉了,这些特征是一般程序员很少使用的。例如,Java不支持go to语句,代之以提供break和continue语句以及异常处理。
Java还剔除了C++的 *** 作符过载(overload)和多继承特征,并且不使用主文件,免去了预处理程序。因为Java没有结构,数组和串都是对象,所以不需要指针。
Java能够自动处理对象的引用和间接引用,实现自动的无用单元收集,使用户不必为存储管理问题烦恼,能更多的时间和精力花在研发上。
2面向对象
Java是一个面向对象的语言。对程序员来说,这意味着要注意应中的数据和 *** 纵数据的方法,而不是严格地用过程来思考。
在一个面向对象的系统中,类(class)是数据和 *** 作数据的方法的集合。数据和方法一起描述对象(object)的状态和行为。
每一对象是其状态和行为的封装。类是按一定体系和层次安排的,使得子类可以从超类继承行为。在这个类层次体系中有一个根类,它是具有一般行为的类。Java程序是用类来组织的。
Java还包括一个类的扩展集合,分别组成各种程序包(Package),用户可以在自己的程序中使用。
例如,Java提供产生图形用户接口部件的类(javaawt包),这里awt是抽象窗口工具集(abstract windowing toolkit)的缩写,处理输入输出的类(javaio包)和支持网络功能的类(javanet包)。
3分布性
Java设计成支持在网络上应用,它是分布式语言。Java既支持各种层次的网络连接,又以Socket类支持可靠的流(stream)网络连接,所以用户可以产生分布式的客户机和服务器。
网络变成软件应用的分布运载工具。Java程序只要编写一次,就可到处运行。
参考资料来源:百度百科--Java 编程语言
参考资料来源:百度百科--Java
转载表面上看,是一套基于B/S方式实现的分布式管理系统,但其实背后的架构是基于C/S完成的。你以为他是一只鞋吗?其实他是一个吹风机。作为界面化的系统,浏览器框架是不可或缺的,但更加重要的东西在Socket上面。
一、需要解决中央控制端到各节点服务器之间的通信。
这个其实牵扯到一个通信协议的问题,各语言都有自己的socket,thread的库,直接调用即可。但是这个通信协议就需要自己来完成了。既不能太简单,太简单了,明码传输,如果别人获知了这个接口,就很容易执行一些令人讨厌的 *** 作。也不能太复杂,太复杂了等于是给自己找麻烦,所以简单的数据包编解码的工作或者用token验证的方式是需要的。通信协议起码要两种,一种是传输命令执行的协议,一种是传输文件的协议。
二、跨语言的socket通信
为什么要跨语言,主控端和代理端通信,用什么语言开发其实无所谓。但是为了给自己省事,尽可能使用服务器上已经有了的默认语言,Ambari前期采用phppuppet的方式管理集群,这不是不可以,puppet自己解决了socket通信协议和文件传输的问题,可你需要为了puppet在每台服务器上都安装ruby。我是个有点服务器和代码洁癖的人。光是为了一个puppet就装个ruby,我觉得心里特对不起服务器的资源。所以我自己写了一个python的代理端。python是不管哪个linux系统在安装的时候就都会有了。然后主控端的通信,可以用python实现,也可以用php实现,但是考虑到对于更多的使用者来说,改php可能要比改tornado简单许多,所以就没用python开发。hadoop分支版本众多,发布出去,用户要自己修改成安装适合自己的hadoop发行版,就势必要改源码,会php的明显比会python的多。php里面的model封装了所有的 *** 作,而python只是个 *** 作代理人的角色而已。
所以也延伸出一个问题,什么语言用来做这种分布式管理系统的代理端比较合适,我自己觉得,也就是python比较合适了, *** 作系统自带,原生的package功能基本够用。用java和php也可以写agent,但是你势必在各节点预先就铺设好jre或者php运行环境。这就跟为什么用python和java写mapred的人最多是一样的。没人拦着你用nodejs写mapred,也可以写,就是你得在每个节点都装v8的解释引擎,不嫌麻烦完全可以这样干。原理参看map/rece论文,不解释。perl也是 *** 作系统原生带的,但是perl的可维护性太差了,还是算了吧。
所以这就牵扯到一个跨语言的socket问题,理论上来说,这不存在什么问题。但这是理论上的,实际开发过程中确实存在问题,比如socket长连接,通信数据包在底层的封装方式不同。我没有使用xml-rpc的原因之一就是我听说php的xmlrpc跟其他语言的xmlrpc有不同的地方,需要修改才能用,我就没有用这种办法。最早是自己定义的 *** 作协议,这时就遇到了这些问题,所以后来直接采用了thrift方式。就基本不存在跨语言的socket通信问题了。
三、代理端执行结果的获取
无论命令还是文件是否在代理端执行成功,都需要获取到执行结果返回给中央端。所以这里也涉及一个读取节点上的stdout和stderr的问题。这个总体来说不是很难,都有现成的包。当然这个时候你需要的是阻塞执行,而不能搞异步回调。
还有个问题是,我要尽可能使用python默认就带的包,而尽量不让服务器去访问internet下载第三方的包。
还有代理端最重要的一点,就是python的版本兼容性。centos5用python24,centos6用python26,ubuntu基本默认都是27。所以一定要最大限度的保证语言的跨版本兼容性,要是每个 *** 作系统和每一个版本我都写一个代理,我一个人就累死了。
四、浏览器端的model,view,controller
这里面你要封装好所有的通信协议,以及需要在节点上面执行的脚本。发送文件的 *** 作和数据库 *** 作也要在model里面完成。
如果对tcl/tk很熟,也可以写基于 *** 作系统界面方式的管理,不用浏览器就是了。
view对我来说是最痛苦的事,都是现学的jQuery怎么用,前端的工作太可怕了。关于这方面,没有太多可描述的,html和js带给我的只有痛苦的回忆,万恶的undefined。
五、跨 *** 作系统的安装文件封装。
要适应不同的 *** 作系统也是个很麻烦的事情,需要用agent提前获知 *** 作系统的发行分支,版本号。然后去找到对应的安装文件去执行。你不能保证一个分布式系统的集群中所有的节点都可以访问internet,更多的情况是这些节点都存在在一个安全的内网中。只有个别几个节点是可以访问外网的。所以,我势必要把所有的安装文件以及他们的依赖尽可能集中起来。我不确定安装 *** 作系统的lzo,yum或者apt-get会去下什么鬼东西,甚至无论是yum还是apt-get,里面都没有hadoop-lzo的库文件。所以,最好的办法是自己编译打包rpm和deb包。直接安装就好了,别去找repo下载什么。
这就是第五步工作,把需要的依赖的东西自己编译打包成rpm和deb。
deb包很好解决,但是rpm就没那么好办了,需要学习rpm的编译文件如何编写,这块是挺麻烦的,但是这玩意用好了还是挺不错的。现在我自制的安装包里面就已经包含了自己编译的lzo和snappy两种压缩库,以及hadoop-gpl-packaging的rpm和deb。下一个发布的easyhadoop将直接支持centos5,6,suse,以及ubuntu/debian的系统上安装hadoop。已经自带了lzo和snappy以及lzop和snzip。
六、把这些所有东西,整合到一个系统里面。
关联这些所有事情间的联系,整合到一个浏览器界面里面去。写一个分布式的管理脚本不难,写一个界面也不难,但是也许是我的水平不行,这两件事结合起来让他们协同工作还是有点难度的。对我来说,写界面的工作可能更难一点。
Cloudera可能是十来个人在写Manager的东西,ambari也是放到github和apachesvn上面,apache基金会的各种committer在写。easyhadoop没他们功能那么强大,一年来只有我一个人设计架构,功能,各种语言的编码,测试,发布。Fortheloveofgod,WhathaveIdone(英文部分请站在山顶仰天长啸)T_T。从前台到后台,到hadoop和生态系统以及他们的依赖软件的单独patch、编译打包。(系统yum或者apt-get的包不如自己打的好使。)
从时间上来看,全球第一款开源的hadoop部署管理系统应该还是属于ambari,2011年8月开始写的,2012年9月底进入apache的incubator。我是大概2012年8月开始写的easyhadoop,全球第一没赶上,估计国内第一个开源的hadoop管理系统还是可以排上的。
Dryad:MapReduce之外的新思路 目前各大软件巨头都搭建了自己的分布式平台解决方案,主要包括Dryad,DynamoSDMapReduce等框架。2010年12月21日,微软发布了Dryad的测试版本,成为谷歌MapReduce分布式并行计算平台的竞争对手。Dryad是微软构建云计算基础设施的重要核心技术之一,它可以让开发人员在Windows或者,NET平台上编写大规模的并行应用程序模型,并能够让在单机上编写的程序运行在分布式并行计算平台上。工程师可以利用数据中心的服务器集群对数据进行并行处理,当工程师在 *** 作数千台计算机时,无需关心分布式并行计算系统方面的细节。DryadgDDryadLINO是微软硅谷研究院创建的研究项目,主要用来提供一个分布式并行计算平台。DryadLINO是分布式计算语言,能够将LINQ编写的程序转变为能够在Dryad上运行的程序,使普通程序员也可以轻易进行大规模的分布式计算。它结合了微软Dryad和LINO两种关键技术,被用于在该平台上构建应用。Dryad构建在Cluster Service(集群服务)和分布式文件系统之上,可以处理任务的创建和管理、资源管理,任务监控和可视化、容错,重新执行和调度等工作。
Dryad同MapReduce样,它不仅仅是种编程模型,同时也是一种高效的任务调度模型。Dryad这种编程模型不仅适用于云计算,在多核和多处理器以及异构机群上同样有良好的性能。在VisualStudio 2010 C++有一套并行计算编程框架,支持常用的协同任务调度和硬件资源(例如CPU和内存等)管理,通过WorkStealing算法可以充分利用细颗粒度并行的优势,来保证空闲的线程依照一定的策略建模,从所有线程队列中“偷取”任务执行,所以能够让任务和数据粒度并行。Dryad与上述并行框架相似,同样可以对计算机和它们的CPU进行调度,不同的是Dryad被设计为伸缩于各种规模的集群计算平台,无论是单台多核计算机还是由多台计算机组成的集群,甚至拥有数千台计算机的数据中心,都能以从任务队列中创建的策略建模来实现分布式并行计算的编程框架。
Dryad系统架构
Dryad系统主要用来构建支持有向无环图(Directed Acycline Graph,DAG)类型数据流的并行程序,然后根据程序的要求进行任务调度,自动完成任务在各个节点上的运行。在Dryad平台上,每个任务或并行计算过程都可以被表示为一个有向无环图,图中的每个节点表示一个要执行的程序,节点之间的边表示数据通道中数据的传输方式,其可能是文件、TCPPipe、共享内存
用Dryad平台时,首先需要在任务管理(JM)节点上建立自己的任务,每一个任务由一些处理过程以及在这些处理过程问的数据传递组成。任务管理器(JM)获取无环图之后,便会在程序的输入通道准备,当有可用机器的时候便对它进行调度。JM从命名服务器(NS)那里获得一个可用的计算机列表,并通过一个维护进程(PD)来调度这个程序。
Dryad的执行过程可以看做是一个二维管道流的处理过程,其中每个节点可以具有多个程序的执行,通过这种算法可以同时处理大规模数据。在每个节点进程(VerticesProcesses)上都有一个处理程序在运行,并且通过数据管道(Channels)的方式在它们之间传送数据。二维的Dryad管道模型定义了一系列的 *** 作,可以用来动态地建立并且改变这个有向无环图。这些 *** 作包括建立新的节点,在节点之间加入边,合并两个图以及对任务的输入和输出进行处理等。
Dryad模型算法应用
DryadLINQ可以根据工程师给出的LINQ查询生成可以在Dryad引擎上执行的分布式策略算法建模(运算规则),并负责任务的自动并行处理及数据传递时所需要的序列化等 *** 作。此外,它还提供了一系列易于使用的高级特性,如强类型数据、Visual Studio集成调试以及丰富的任务优化策略(规则)算法等。这种模型策略开发框架也比较适合采用领域驱动开发设计(DDD)来构建“云”平台应用,并能够较容易地做到自动化分布式计算。
我们经常会遇到网站或系统无法承载大规模用户并发访问的问题,解决该问题的传统方法是使用数据库,通过数据库所提供的访问 *** 作接口来保证处理复杂查询的能力。当访问量增大,单数据库处理不过来时便增加数据库服务器。如果增加了三台服务器,再把用户分成了三类A(学生)、B(老师),C(工程师)。每次访问时先查看用户属于哪一类,然后直接访问存储那类用户数据的数据库,则可将处理能力增加三倍,这时我们已经实现了一个分布式的存储引擎过程。
我们可以通过Dryad分布式平台来解决云存储扩容困难的问题。如果这三台服务器也承载不了更大的数据要求,需要增加到五台服务器,那必须更改分类方法把用户分成五类,然后重新迁移已经存在的数据,这时候就需要非常大的迁移工作,这种方法显然不可取。另外,当群集服务器进行分布式计算时,每个资源节点处理能力可能有所不同(例如采用不同硬件配置的服务器),如果只是简单地把机器直接分布上去,性能高的机器得不到充分利用,性能低的机器处理不过来。
Dryad解决此问题的方法是采用虚节点,把上面的A、B、C三类用户都想象成一个逻辑上的节点。一台真实的物理节点可能会包含一个或者几个虚节点(逻辑节点),看机器的性能而定。我们可以把那任务程序分成Q等份(每一个等份就是一个虚节点),这个Q要远大于我们的资源数。现在假设我们有S个资源,那么每个资源就承担Q/S个等份。当一个资源节点离开系统时,它所负责的等份要重新均分到其他资源节点上;当一个新节点加入时,要从其他的节点1偷取2一定数额的等份。
在这个策略建模算法下,当一个节点离开系统时,虽然需要影响到很多节点,但是迁移的数据总量只是离开那个节点的数据量。同样,~个新节点的加入,迁移的数据总量也只是一个新节点的数据量。之所以有这个效果是因为Q的存在,使得增加和减少节点的时候不需要对已有的数据做重新哈希(D)。这个策略的要求是Q>>s(存储备份上,假设每个数据存储N个备份则要满足Q>>SN)。如果业务快速发展,使得不断地增加主机,从而导致Q不再满足Q>>S,那么这个策略将重新变化。
Dryad算法模型就是一种简化并行计算的编程模型,它向上层用户提供接口,屏蔽了并行计算特别是分布式处理的诸多细节问题,让那些没有多少并行计算经验的开发 人员也可以很方便地开发并行应用,避免了很多重复工作。这也就是Dryad算法模型的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛,并且能大大减轻了工程师在开发大规模数据应用时的负担。
通过上述的论述,我们可以看到Dryad通过一个有向无环图的策略建模算法,提供给用户一个比较清晰的编程框架。在这个编程框架下,用户需要将自己的应用程序表达为有向无环图的形式,节点程序则编写为串行程序的形式,而后用Dryad方法将程序组织起来。用户不需要考虑分布式系统中关于节点的选择,节点与通信的出错处理手段都简单明确,内建在Dryad框架内部,满足了分布式程序的可扩展性、可靠性和对性能的要求。
使用Drvad LINO
通过使用DryadLINQ编程,使工程师编写大型数据并行程序能够轻易地运行在大型计算机集群里。DryadLINO开发的程序是一组顺序的L_NQ代码,它们可以针对数据集做任何无副作用的 *** 作,编译器会自动将其中数据并行的部分翻译成并行执行的计划,并交由底层的Dryad平台完成计算,从而生成每个节点要执行的代码和静态数据,并为所需要传输的数据类型生成序列化代码;
LINQ本身是,NET引入的组编程结构,它用于像 *** 作数据库中的表一样来 *** 作内存中的数据集合。DryadLINQ提供的是一种通用的开发/运行支持,而不包含任何与实际业务,算法相关的逻辑,Dryad和DryadLINQ都提供有API。DryadLINQ使用和LINQ相同的编程模型,并扩展了少量 *** 作符和数据类型以适用于数据并行的分布式计算。并从两方面扩展了以前的计算模型(SQL,MapReduce,Dryad等)它是基于,NET强类型对象的,表达力更强的数据模型和支持通用的命令式和声明式编程(混合编程),从而延续了LINQ代码即数据(treat codeas data)的特性。
DryadLINQ使用动态的代码生成器,将DryadLINQ表达式编译成,NET字节码。这些编译后的字节码会根据调度执行的需要,被传输到执行它的机器上去。字节码中包含两类代码完成某个子表达式计算的代码和完成输入输出序列化的代码。这种表达式并不会被立刻计算,而是等到需要其结果的时候才进行计算。DryadLINQ设计的核心是在分布式执行层采用了一种完全函数式的,声明式的表述,用于表达数据并行计算中的计算。这种设计使得我们可以对计算进行复杂的重写和优化,类似于传统的并行数据库。从而解决了传统分布式数据库SQL语句功能受限与类型系统受限问题,以及MapReduce模型中的计算模型受限和没有系统级的自动优化等问题。
在Dryad编程模式中,应用程序的大规模数据处理被分解为多个步骤,并构成有向无环图形式的任务组织,由执行引擎去执行。这两种模式都提供了简单明了的编程方式,使得工程师能够很好地驾驭云计算处理平台,对大规模数据进行处理。Dryad的编程方式可适应的应用也更加广泛,通过DryadLINQ所提供的高级语言接口,使工程师可以快速进行大规模的分布式计算应用程序的编写。
Dryad技术的应用
云计算最重要的概念之~就是可伸缩性,实现它的关键是虚拟化。通过虚拟化可以在一台共享计算机上聚集多个 *** 作系统和应用程序,以便更好地利用服务器。当一个服务器负载超荷时,可以将其中一个 *** 作系统的一个实例(以及它的应用程序)迁移到一个新的,相对闲置的服务器上。虚拟化(Virtualization)是云计算的基石,企业实现私有云的第一步就是服务器基础架构进行虚拟化。基础设施虚拟化之后。接下来就是要将现有应用迁移到虚拟环境中。
Dryad结合Hyper-V(Windows Server 2008的一个关键组成部分)虚拟化技术。可以实现TB级别数据的在线迁移。中小型企业也可以针对企业内部小型集群服务器进行分布式应用系统编程,以及制定私有云开发与应用解决方案等设计。Windows Azure是微软的公有云解决方案,但是目前要大规模应用还为时过早。使用现有Windows第三方产品实现私有云,花费成本却很大。然而Dryad技术给我们带来了不错的折中选择,当我们基于Windows Server台运行应用系统或者网站时,便可以基于Dryad分布式架构来开发与设计实现。当公有云时机成熟和各种条件完备时,系统可以很轻易地升级到公有云,企业而无需花费太多成本。
写在最后
云计算可以看成是网络计算与虚拟化技术的结合,利用网络的分布式计算能力将各种IT资源筑成一个资源池,然后结合成熟的存储虚拟化和服务虚拟化技术,让用户实时透明地监控和调配资源。Dryad是实现构建微软云计算基础设施的重要核心技术之一,其具有诸多优点,如DryadLINQ具有声明式编程并将 *** 作的对象封装为,NET类数据,方便数据 *** 作,自动并行化、VisualStudio IDE和,NET类库集成,自动序列化和任务图的优化(静态和动态(主要通过DryadAPI实现)),对J0in进行了优化,得到了比BigTable+MapReduee更快的Join速率和更易用的数据 *** 作方式等。
不过,Dryad和DryadLINQ也同样具有局限性。其一,它更适用于批处理任务,而不适用于需要快速响应的任务;这个数据模型更适用于处理流式访问,而不是随机访问。其二,DryadLINQ使用的是,NET的LINO查询语言模型,针对运行Windows HPC Server的计算机集群设计,而目前高性能计算市场被Einux所占领。此外,和MapReduce的应用时间和实践相比,Dryad的可靠性还明显不足,据了解除了微软AdCenter中的数据分析和Trident项目之外,其它应用Dryad的地方还很少。不过总的来看,Dryad平台在将来仍具有很广泛的发展前景,尤其对NET开发人员来说是―次很重要的技术革新机遇。
名词解释
任务管理器(Job Manager,JM):每个Job的执行被一个Job Manager控制,该组件负责实例化这个Job的工作图,在计算机群上调度节点的执行;监控各个节点的执行情况并收集一些信息,通过重新执行来提供容错:根据用户配置的策略动态地调整工作图。
计算机群(Cluster):用于执行工作图中的节点。
命名服务器(Name Server,Ns):负责维护cluster中各个机器的信息。
维护进程(PDaemon,PD):进程监管与调度工作。ASP全名Active Server Pages,是一个WEB服务器端的开发环境,利用它可以产生和执行动态的、互动的、高性能的WEB服务应用程序。ASP采用脚本语言VBScript(Java script)作为自己的开发语言。
PHP是一种跨平台的服务器端的嵌入式脚本语言。它大量地借用C,Java和Perl语言的语法, 并耦合PHP自己的特性,使WEB开发者能够快速地写出动态产生页面。它支持目前绝大多数数据库。还有一点,PHP是完全免费的,不用花钱,你可以从PHP官方站点(>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)