问下现在DDR1的内存什么价钱

问下现在DDR1的内存什么价钱,第1张

1G的大概200左右,200不到点,现在有点回落。
上1G2就可以了,
用不着2G的,DDR400 2G的大多是服务器上的,台机的不一定能找到,再说你的板子能不能支持2G2还是个问题

分类: 电脑/网络 >> 硬件
解析:

不是

内存 : 双通道内存

双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865/875系列,而AMD方面则是NVIDIA Nforce2系列。

双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400/533/800MHz,总线带宽分别是32GB/sec,42GB/sec和64GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是21GB/sec,27GB/sec和32GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是42GB/sec,54GB/sec和64GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266/333/400MHz,总线带宽分别是21GB/sec,27GB/sec和32GB/sec,使用单通道的DDR 266/DDR 333/DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。
NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。

普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。

支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P/865G/865GV/865PE/875P以及之后的915/925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。

内存 : DDR2与DDR

DDR2与DDR的区别

与DDR相比,DDR2最主要的改进是在内存模块速度相同的情况下,可以提供相当于DDR内存两倍的带宽。这主要是通过在每个设备上高效率使用两个DRAM核心来实现的。作为对比,在每个设备上DDR内存只能够使用一个DRAM核心。技术上讲,DDR2内存上仍然只有一个DRAM核心,但是它可以并行存取,在每次存取中处理4个数据而不是两个数据。

DDR2与DDR的区别示意图

与双倍速运行的数据缓冲相结合,DDR2内存实现了在每个时钟周期处理多达4bit的数据,比传统DDR内存可以处理的2bit数据高了一倍。DDR2内存另一个改进之处在于,它采用FBGA封装方式替代了传统的TSOP方式。

然而,尽管DDR2内存采用的DRAM核心速度和DDR的一样,但是我们仍然要使用新主板才能搭配DDR2内存,因为DDR2的物理规格和DDR是不兼容的。首先是接口不一样,DDR2的针脚数量为240针,而DDR内存为184针;其次,DDR2内存的VDIMM电压为18V,也和DDR内存的25V不同。

DDR2的定义:

DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。

此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。

DDR2与DDR的区别:

在了解DDR2内存诸多新技术前,先让我们看一组DDR和DDR2技术对比的数据。

1、延迟问题:

从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。

这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是32GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。

2、封装和发热量:

DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。

DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。

DDR2内存采用18V电压,相对于DDR标准的25V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。

DDR2采用的新技术:

除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。

OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。

ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。

Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS *** 作中,CAS信号(读写/命令)能够 到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。

总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决

这段时间,各大内存颗粒、模组厂商都突然活跃起来,纷纷宣扬各自的DDR4产品进展,虽然DDR4内存标准规范的正式公布是2012年9月底,不过DDR4内存规格原计划是在2011年制定完成,2012年开始投入生产并上市的。所以在之前的很长一段时间,三星、SK海力士、美光等多家DRAM厂商都已经完成了DDR4内存芯片的开发,并计划进行量产,奈何DDR4内存标准一直未见公布,他们也不敢轻举妄动。所以可以说DDR4内存的出现已经是酝酿已久了。

如今DDR4已经欲势待发,只是在等待相应的主板与CPU上市了,那么相比DDR3,都有了哪些比较重要的改进呢下面我就为大家介绍一下吧,欢迎大家参考和学习。

DDR4内存的改进:

1DDR4内存条外观变化明显,金手指变成弯曲状

2DDR4内存频率提升明显,可达4266MHz

3DDR4内存容量提升明显,可达128GB

4DDR4功耗明显降低,电压达到12V、甚至更低

很多电脑用户可能对于内存的内在改进不会有太多的关注,而外在的变化更容易被人发现,一直一来,内存的金手指都是直线型的,而在DDR4这一代,内存的金手指发生了明显的改变,那就是变得弯曲了,其实一直一来,平直的内存金手指插入内存插槽后,受到的摩擦力较大,因此内存存在难以拔出和难以插入的情况,为了解决这个问题,DDR4将内存下部设计为中间稍突出、边缘收矮的形状。在中央的高点和两端的低点以平滑曲线过渡。这样的设计既可以保证DDR4内存的金手指和内存插槽触点有足够的接触面,信号传输确保信号稳定的同时,让中间凸起的部分和内存插槽产生足够的摩擦力稳定内存。

其次,DDR4内存的金手指本身设计有较明显变化。金手指中间的“缺口”也就是防呆口的位置相比DDR3更为靠近中央。在金手指触点数量方面,普通DDR4内存有284个,而DDR3则是240个,每一个触点的间距从1mm缩减到085mm, 笔记本 电脑内存上使用的SO-DIMM DDR4内存有256个触点,SO-DIMM DDR3有204个触点,间距从06毫米缩减到了05毫米。

第三,标准尺寸的DDR4内存在PCB、长度和高度上,也做出了一定调整。由于DDR4芯片封装方式的改变以及高密度、大容量的需要,因此DDR4的PCB层数相比DDR3更多,而整体尺寸也有了不同的变化,如上图。

频率和带宽提升巨大

DDR4最重要的使命当然是提高频率和带宽。DDR4内存的每个针脚都可以提供2Gbps(256MB/s)的带宽,DDR4-3200那就是512GB/s,比之DDR3-1866高出了超过70%。在DDR在发展的过程中,一直都以增加数据预取值为主要的性能提升手段。但到了DDR4时代,数据预取的增加变得更为困难,所以推出了Bank Group的设计。

Bank Group架构又是怎样的情况具体来说就是每个Bank Group可以独立读写数据,这样一来内部的数据吞吐量大幅度提升,可以同时读取大量的数据,内存的等效频率在这种设置下也得到巨大的提升。DDR4架构上采用了8n预取的Bank Group分组,包括使用两个或者四个可选择的Bank Group分组,这将使得DDR4内存的每个Bank Group分组都有独立的激活、读取、写入和刷新 *** 作,从而改进内存的整体效率和带宽。如此一来如果内存内部设计了两个独立的Bank Group,相当于每次 *** 作16bit的数据,变相地将内存预取值提高到了16n,如果是四个独立的Bank Group,则变相的预取值提高到了32n。

如果说Bank Group是DDR 4内存带宽提升的关键技术的话,那么点对点总线则是DDR4整个存储系统的关键性设计,对于DDR3内存来说,目前数据读取访问的机制是双向传输。而在DDR4内存中,访问机制已经改为了点对点技术,这是DDR4整个存储系统的关键性设计。

在DDR3内存上,内存和内存控制器之间的连接采用是通过多点分支总线来实现。这种总线允许在一个接口上挂接许多同样规格的芯片。我们都知道目前主板上往往为双通道设计四根内存插槽,但每个通道在物理结构上只允许扩展更大容量。这种设计的特点就是当数据传输量一旦超过通道的承载能力,无论你怎么增加内存容量,性能都不见的提升多少。这种设计就好比在一条主管道可以有多个注水管,但受制于主管道的大小,即便你可以增加注水管来提升容量,但总的送水率并没有提升。因此在这种情况下可能2GB增加到4GB你会感觉性能提升明显,但是再继续盲目增加容量并没有什么意义了,所以多点分支总线的好处是扩展内存更容易,但却浪费了内存的位宽。

因此,DDR4抛弃了这样的设计,转而采用点对点总线:内存控制器每通道只能支持唯一的一根内存。相比多点分支总线,点对点相当于一条主管道只对应一个注水管,这样设计的好处可以大大简化内存模块的设计、更容易达到更高的频率。不过,点对点设计的问题也同样明显:一个重要因素是点对点总线每通道只能支持一根内存,因此如果DDR4内存单条容量不足的话,将很难有效提升系统的内存总量。当然,这难不道开发者,3DS封装技术就是扩增DDR4容量的关键技术。

容量剧增 最高可达128GB

3DS(3-Dimensional Stack,三维堆叠)技术是DDR4内存中最关键的技术之一,它用来增大单颗芯片的容量。

3DS技术最初由美光提出的,它类似于传统的堆叠封装技术,比如手机芯片中的处理器和存储器很多都采用堆叠焊接在主板上以减少体积—堆叠焊接和堆叠封装的差别在于,一个在芯片封装完成后、在PCB板上堆叠;另一个是在芯片封装之前,在芯片内部堆叠。一般来说,在散热和工艺允许的情况下,堆叠封装能够大大降低芯片面积,对产品的小型化是非常有帮助的。在DDR4上,堆叠封装主要用TSV硅穿孔的形式来实现。

所谓硅穿孔,就用激光或蚀刻方式在硅片上钻出小孔,然后填入金属联通孔洞,这样经过硅穿孔的不同硅片之间的信号可以互相传输。在使用了3DS堆叠封装技术后,单条内存的容量最大可以达到目前产品的8倍之多。举例来说,目前常见的大容量内存单条容量为8GB(单颗芯片512MB,共16颗),而DDR4则完全可以达到64GB,甚至128GB。

更低功耗 更低电压

更低的电压:这是每一代DDR进化的必备要素,DDR4已经降至12V

首先来看功耗方面的内容。DDR4内存采用了TCSE ( Temperature Compensated Self-Refresh,温度补偿自刷新,主要用于降低存储芯片在自刷新时消耗的功率)、TCARtemperature Compensated Auto Refresh,温度补偿自动刷新,和T CSE类似)、DBI(Data Bus Inversion,数据总线倒置,用于降低VDDQ电流,降低切换 *** 作)等新技术。

这些技术能够降低DDR4内存在使用中的功耗。当然,作为新一代内存,降低功耗最直接的 方法 是采用更新的制程以及更低的电压。目前DDR4将会使用20nm以下的工艺来制造,电压从DDR3的15V降低至DDR4的12V,移动版的SO-DIMMD DR4的电压还会降得更低。而随着工艺进步、电压降低以及联合使用多种功耗控制技术的情况下,DDR4的功耗表现将是非常出色的。

人们对于DDR4的期望是相当高的,对于它的上市已经等待已久,不过要知道DDR3花了足足三年的时间才完成对DDR2的取代,而DDR4的野心却是大多了,虽然要到今年底才会正式登场亮相,但是明年就有打算要占据半壁江山,成为新的主流规格。接下来让我们看一下近期关于各个厂商关于DDR4内存的生产发布情况。

支持下一代处理器 威刚DDR4内存曝光

威刚近日正式宣布了自己的首批DDR4内存产品,威刚首发的DDR4并不多,只有标准的服务器型ECC RDIMM,容量4GB、8GB、16GB,额定频率也是2133MHz,电压12,产品编号AD4R2133W4G15、AD4R2133Y8G15、AD4R2133Y16G15。

不过威刚表示,DDR4版本的ECC SO-DIMM、VLP RDIMM、LRDIMM等类型也都正在研发之中,很快就会陆续推出。

这些内存都是供服务器、工作站使用的,威刚也说他们一直在与Intel密切合作,其DDR4内存完全支持下一代服务器平台Haswell-EP Xeon E5-2600 v3。

至于消费级的DDR4内存,谁也没有任何消息,不过Intel将在第三季度推出首个支持DDR4的桌面发烧平台Haswell-E,相信很快就会有新内存跟上。

2400MHz DDR4试产 美光DDR4大规模开工

威刚早些时候正式宣布了他们的首批DDR4内存产品,美光也不甘示弱,宣布其DDR4内存已经大规模投产,并在逐步提高产量。

美光表示,目前量产的是4Gb DDR4内存颗粒,标准频率为2133MHz,并特别与Intel合作,针对将在下半年发布的下一代服务器平台Xeon E5-2600 v3进行了优化。

新平台架构基于22nm Haswell-EP,将取代去年9月份发布的Ivy Bridge-EP E5-2600 v2,主要面向双路服务器领域。

目前已经发布的DDR4内存频率都只有2133MHz,这其实是DDR3也可以轻松达到的高度,自然不能凸显新内存的优势。美光称,2400MHz DDR4正在试产,预计2015年正式投产(也就是说今年别期望啥了)。

美光还透露,他们将陆续推出符合JEDEC DDR4标准的完整产品线,涵盖RDIMM、LRDIMM、VLP RDIMM、UDIMM、SO-DIMM各种规格,ECC也可选有无,到今年第三季度初的时候还会增加NVDIMM。

窄条兼容性强 Virtium发布DDR4内存

DDR4内存终于全面开花结果了。嵌入式存储厂商Virtium今天也推出了他们的DDR4产品,而且非常特殊,首次采用了ULP超小型规格,高度只有区区178毫米(07英寸)。

DDR4 DIMM内存的标准高度为3125毫米,稍稍高于DDR3 3035毫米,而在笔记本上的SO-DIMM高度为30毫米,针对高密度服务器的VLP甚小型规格只有183-187毫米(072-0738英寸)。

ULP则是所有类型中最为小巧的,只有标准型的一半多,适用于空间狭窄的嵌入式领域。

Virtium ULP DDR4内存也是服务器型的URIMM,单条容量4GB(单Rank)、8GB(双Rank)、16GB(双Rank),标准频率2133MHz,标准电压12V,标准耐受温度范围0~85℃,扩展/工业耐受温度范围-25/-40~95℃,五年质保。

Virtium表示,这种内存已经经过了客户的测试和验证,即将批量供货。

DDR4变活跃 三星加速投产DDR4内存颗粒

这段时间,各大内存颗粒、模组厂商都突然活跃起来,纷纷宣扬各自的DDR4产品进展,而作为DRAM行业领头羊、第一家量产DDR4的三星电子又怎么能保持沉默韩国巨头近日宣布,正在加速投产DDR4内存颗粒、内存条。

和威刚、美光一样,三星也特别提到了Intel将在下半年发布的新一代服务器平台Haswell-EP Xeon E5-2600 v3,称自家的DDR4内存就是为该平台准备的。

三星目前已经量产的DDR4内存都是单Die 4Gb(512MB)的容量,提供x4、x8、x16等不同芯片封装规格,单条容量最高32GB,频率是标准的2133MHz,规格涵盖RDIMM、LPDIMM、ECC SODIMM等等。

DDR2与DDR的区别:
在了解DDR2内存诸多新技术前,先让我们看一组DDR和DDR2技术对比的数据。
1、延迟问题:
从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4bIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。
这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是32Gb/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。
2、封装和发热量:
DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。
DDR内存通常采用TSOp芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FbGA封装形式。不同于目前广泛应用的TSOp封装形式,FbGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。
DDR2内存采用18V电压,相对于DDR标准的25V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。
DDR2采用的新技术:
除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和post CAS。
OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。
ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。
post CAS:它是为了提高DDR II内存的利用效率而设定的。在post CAS *** 作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。
总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。

DDR是现在的主流内存规范,各大芯片组厂商的主流产品全部是支持它的。DDR全称是DDR SDRAM(Double Date Rate SDRAM,双倍速率SDRAM)
DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。
主流
DDR2 800 1066

分类: 电脑/网络 >> 硬件
解析:

2005年8月26日在旧金山召开的英特尔开发商论坛(IDF)上,全球内存产品供应商英飞凌科技公司(FSE/NYSE:IFX)宣布,该公司正在推出双数据速率2(DDR2)全缓冲内存模块(FB-DIMM)样品,英飞凌是业界唯一能设计和生产FB_DIMM所有关键部件的公司。容量在512MB到4GB之间的新型FB-DIMM,基于英飞凌出品的高级内存缓冲(AMB)芯片、DDR2 DRAM芯片及其自主开发的散热器。另外,英飞凌还为其他FB-DIMM生产商提供AMB逻辑芯片,并且已经将样品发给了第一批客户。

“新模块的优化生产需要三方面的创新:高容量高速DDR2 DRAM、 AMB芯片以及散热器(管理高内存容量与高速AMB芯片融合产生的热负荷),”英飞凌内存产品事业部计算业务部主管Michael Buckermann说,“从2006年起,这种技术将开始逐渐取代高端服务器系统中的寄存式DIMM产品,英飞凌对组件和模块生产的全面控制将为服务器生产商提供成熟的高质量产品,并实现顺利部署经过优化调整的FB-DIMM。”

FB-DIMM把现行寄存式DIMM的并行结构变成了串行点到点连接。这将消除新一代服务器内存容量增加与速度升级导致的吞吐量瓶颈。英飞凌设计生产的AMB,是一个高度复杂的逻辑芯片,它将控制点到点连接,第一代AMB能提供48Gbps的数据速率来实现与传输速度高达800Mbps 的DDR2 DRAM的直接高速链接。除了用于自有模块之外,英飞凌还为其他FB-DIMM生产商提供AMB芯片,从而推进新一代服务器内存的市场渗透。

作为FB-DIMM开发领域的先驱,英飞凌在2004年8月推出了业内第一款AMB测试芯片,并在2005年2月的IDF论坛上成功展示了DDR2平台上的系统启动。今天宣布的这代FB-DIMM将运用速度级别在553和667Mbps的DDR2 DRAM,今后将进一步提升到800 Mbps。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13211721.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-21
下一篇 2023-06-21

发表评论

登录后才能评论

评论列表(0条)

保存