大数据精准营销的优势:
1、用户数据洞察,制定更注重结果和行动的营销传播计划。
2、精准定向投放,抓住潜在用户,实现低成本高效获客。
3、数据监测进度,记录用户孵化进度便于及时调整策略。
4、发现品牌机遇,如新客户、新市场、新规律、回避风险等。
传统的新品在洞察市场机会时,往往是根据市场部,咨询公司或者其他行业报告进行分析的,然后再粗略的预估新品的市场潜力。对于品牌来讲,这种方法限制的新品的研发效率,并且不确定是否符合市场期望。
孙子兵法有云: 知己知彼,百战不殆 。如果把这句话搬到新品研发过程中,依然适用,可以这样理解,
知己 ,了解品牌自身情况,市场占有率,内部运作流程,品牌影响力,品牌运营以及品牌的短板。
知彼 ,了解品牌的消费者在哪,消费者是谁,消费者的兴趣倾向;了解品牌的竞争对手,他在哪,什么样的,有哪些优势和弱势。
接下来,我们就聊聊,再者大数据时代,怎么洞察市场,挖掘具有竞争力的新品。
人人都在讨论大数据,那么大数据的核心价值是什么?能做哪些事情?我们拆解一下这个词,分为 “大” 和 “数据” 。
何谓“大”?简单来讲,可以理解为它的覆盖面广,全面,无所不能,庞大的。
何谓“数据”?即为根数据(Metadata),散落在各处的信息,咨询,资料等。
两个字组合起来可以转译为,人类可以通过庞大的根数据,应用到生活的各个方面。
大数据的核心价值就在于它的 商业价值 。通过从庞大的数据中,挖掘最有价值的信息,并应用到实际场景中。
大数据时代,人与互联网紧密相连。标记和记录一个人的信息,不再仅仅是通过身份z,而是有无数个根数据组成。根数据不是对象本身,它只描述对象的属性。例如,描述人的通俗的话语:
其中根数据为,身高,屁股,牙,口腔,胳肢窝,对应的值为一米二,身高一半,黄,臭和上锈。
当然,我们也可以通过根数据,了解整个人的信息,也就是所谓的用户画像。
以往,传统线下商店里,消费者买了什么,是谁买的,为什么买,他有什么特征,这些资料对于商店来说,是完全不清楚的。不过,这些事情对于大数据,简直是轻而易举。消费者在网上的记录十分详细,他的收入情况,地址甚至是生活习惯都可以探查清楚。
这也是大数据的魅力所在,当然,我们也可以将大数据能力矩阵,赋能在品牌新品的创新上,通过洞察市场机会,甄选产品概念并预估市场潜力。
盲目的投放和发布新产品,会受到市场的打击,提前预知消费者的兴趣倾向,购买喜好将会对新产品起到积极的正向作用。
用户在互联网上的多年的行为数据,都会详细记录在服务器,数据可能会散落在各个网站。但,这些数据能够详细描述用户的特征,都需要哪些数据?
用户基础数据
这部分数据描述了用户的基本特征,能够确定 用户是谁 。具体可以包括,
姓名,性别,年龄,职业,收入,地域,注册地,常用ip,手机型号等。如果该用户是实名注册,那这些数据可以很容易获取。但若是非实名,就需要后期通过模型推断其各个属性,如用户的性别判断,笔者在之前的文章中也有所描述,可以参考下《 AI驱动的电商用户模型:性别属性是如何确定 》。
购物数据
购物数据,是用户在电商网站上发生了购买行为,所记录下来的数据,从购买数据中可以提取出很多有价值的信息。
当用户对某件商品发生了购买行为,就意味着对商品有需求,商品对他有价值。
紧接着,如果用户周期性购买,那么用户就是该商品的绝对忠诚用户。
再者,用户浏览,搜索,加购,关注行为,也能反映用户对商品的倾向
不同的购买行为,能够对用户定义不同的标签,从而衍生了如下的数据维度:
购买力: 通过历史消费记录,收集订单价格信息,再根据其消费额度,判断用户的购买力,详情也可以查看笔者之前文章《 电商购买力模型:用大数据解锁智慧营销的新姿势 》
促销敏感度: 用户订单中,有优惠的订单比例。这个数据能够对品牌商的促销和促销力度提供指导作用。
还有,用户忠诚度,复购周期,品牌RFM模型,品牌偏好,性格偏好等等等等。
行业数据
当然,不单单要知道用户的信息,还需要了解自己和对手市场情况,有针对性做分析。
首先,聚焦自身品牌粉丝,探查粉丝不同性别,区域和年龄层对产品属性的青睐。举个简单例子,YSL粉丝群体中,一线城市品牌的金牌会员,年轻人更喜欢粉红色的口红,又喜欢短款,那么品牌可以针对这些人群有的放矢的研发新产品。
其次,了解竞品情况,跟进竞品市场。每个品牌的产品线不一定相同,sku池深度迥异。对于竞品品牌的爆品,我们可以针对性拉取爆品的粉丝,了解他的用户群体,并应用到新品研发策略中。
社交数据
社交数据能够更全面的认识品牌的人群,深度的理解用户的社交属性,在媒体上的发声态度,可以更加立体的理解用户群。
根据上述数据标签,能够充分的了解用户的需求点在哪里,新产品做到有的放矢。再通过大数据能力输出与产品匹配程度较高的用户群体,这可以为新产品的冷启动带来一批种子用户。
新品营销和品牌营销的套路基本相同,任何的新品对于用户来说,都需要经过“接触-认知-认识-认可”的一个过程。不过,在新品上市时,我们需要通过大数据,来完成用户对新品的接触和认知过程。也可以认为,这是新品的冷启动过程。
做过社区的朋友都应该知道,冷启动的种子用户,对于新产品有多么的重要。寻找精准的流量对新品带来的效果将是不可估量的。
这部分精准流量的筛选,可以分为三个阶段,预热期-爆发期-收尾期
预热期:扩大人群范围
预热期的目标就是希望可以让更多的人了解新品,让用户能够真的感知到新品的优势和创意点。此时,需要挖掘新品可能存在的潜在用户流量,把数据范围扩大新品所在品类,甚至相关品类。凡是对新品所在品类或者相关品类有过购买,浏览,搜索,收藏或者加购行为的用户,都要进行触达。
爆发期:寻找精准流量
爆发期即为收割期,春季栽的稻子该去收割了。其实就是把预热期触达的用户,进一步精准筛选,选出头部流量。此时,可以结合公司内外的资源对这部分用户进行邀请制的测试,使用新产品,优惠补贴,评测或媒体公关。进而将头部流量转化为已购用户和品牌粉丝,再通过这部分人群的口口相传,达到很好的口碑传播效应。
收尾期:人群二次触达
当然,并不是每个精准用户都会买单,各种各样的原因导致部分用户掉队。可能是当时忘记了,可能当时手头上有其他工作,可能对促销不是很满意,等等。对于这部分人群,我们仍需要再次触达。通过数据筛选出这部分用户群,然后进行大力度促销,最后在观察其数据情况。
当然,以上只是新品冷启动过程中,对人群的玩法。后续还有很多,涉及营销策划、创意、传播、新媒体、商家/货品,线上&线下联动营销等。但,核心的点仍然是 洞察市场和了解用户偏好 ,这样才能推出爆款产品。
大数据营销的主要价值源于以下几个方面:第一,用户行为与特征分析显然,只要积累足够的用户数据,就能分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。有了这一点,才是许多大数据营销的前提与出发点。无论如何,那些过去将“一切以客户为中心”作为口号的企业可以想想,过去你们真的能及时全面地了解客户的需求与所想吗?或许只有大数据时代这个问题的答案才更明确。
第二,精准营销信息推送支撑过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要就是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。相对而言,现在的RTB广告等应用则向我们展示了比以前更好的精准性,而其背后靠的即是大数据支撑。
第三,引导产品及营销活动投用户所好如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品生产即可投其所好。例如,Netflix在近投拍《纸牌屋》之前,即通过大数据分析知道了潜在观众最喜欢的导演与演员,结果果然捕获了观众的心。又比如,《小时代》在预告片投放后,即从微博上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。
第四,竞争对手监测与品牌传播竞争对手在干什么是许多企业想了解的,即使对方不会告诉你,但你却可以通过大数据监测分析得知。品牌传播的有效性亦可通过大数据分析找准方向。例如,可以进行传播趋势分析、内容特征分析、互动用户分析、正负情绪分类、口碑品类分析、产品属性分布等,可以通过监测掌握竞争对手传播态势,并可以参考行业标杆用户策划,根据用户声音策划内容,甚至可以评估微博矩阵运营效果。
第五,品牌危机监测及管理支持新媒体时代,品牌危机使许多企业谈虎色变,然而大数据可以让企业提前有所洞悉。在危机爆发过程中,最需要的是跟踪危机传播趋势,识别重要参与人员,方便快速应对。大数据可以采集负面定义内容,及时启动危机跟踪和报警,按照人群社会属性分析,聚类事件过程中的观点,识别关键人物及传播路径,进而可以保护企业、产品的声誉,抓住源头和关键节点,快速有效地处理危机。
第六,企业重点客户筛选许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关;从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。
第七,大数据用于改善用户体验要改善用户体验,关键在于真正了解用户及他们所使用的你的产品的状况,做最适时的提醒。例如,在大数据时代或许你正驾驶的汽车可提前救你一命。只要通过遍布全车的传感器收集车辆运行信息,在你的汽车关键部件发生问题之前,就会提前向你或4S店预警,这决不仅仅是节省金钱,而且对保护生命大有裨益。事实上,美国的UPS快递公司早在2000年就利用这种基于大数据的预测性分析系统来检测全美60000辆车辆的实时车况,以便及时地进行防御性修理。
第八,SCRM中的客户分级管理支持面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像。大数据应用可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。
第九,发现新市场与新趋势基于大数据的分析与预测,对于企业家提供洞察新市场与把握经济走向都是极大的支持。例如,阿里巴巴从大量交易数据中更早地发现了国际金融危机的到来。又如,在2012年美国总统选举中,微软研究院的David Rothschild就曾使用大数据模型,准确预测了美国50个州和哥伦比亚特区共计51个选区中50个地区的选举结果,准确性高于98%。之后,他又通过大数据分析,对第85届届奥斯卡各奖项的归属进行了预测,除最佳导演外,其它各项奖预测全部命中。
第十,市场预测与决策分析支持对于数据对市场预测及决策分析的支持,过去早就在数据分析与数据挖掘盛行的年代被提出过。沃尔玛著名的“啤酒与尿布”案例即是那时的杰作。只是由于大数据时代上述Volume(规模大)及Variety(类型多)对数据分析与数据挖掘提出了新要求。更全面、速度更及时的大数据,必然对市场预测及决策分析进一步上台阶提供更好的支撑。要知道,似是而非或错误的、过时的数据对决策者而言简直就是灾难。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)