另外,精准营销需要掌握利用大数据分析用户需求的技术。大数据记录了用户使用各种应用生成的每一条数据。营销人员可以通过分析这些数据来获取用户的需求,甚至挖掘出用户没有意识到的潜在需求。以手机游戏应用推广为例,不同游戏玩家的喜好差异较大。没有对玩家喜好和使用习惯进行数据分析就投放的广告,往往会变得毫无用处。通过分析用户数据,获取各类信息进行精准营销,可以大大提高下载率,延长留存时间。因此,提高利用大数据分析用户需求的技术成为很多主流广告平台的工作重点之一。和Mintegral一样,它掌握了利用AI技术分析海量用户数据,利用先进的人工智能算法,实现了广告投放时千人千面,有效提升了程序化广告的精准性。
另外,在进行精准营销时,也要注意广告创意和数据的结合。现代人更喜欢个性化、新颖的广告创意,对广告的审美要求也上升到了一个新的高度。然而,缺乏创意的简单粗暴的广告早已跟不上时代的进步,使得营销者越来越重视广告创意。根据数据的分析,消费者需求与耳目一新的创意相结合,理性的数据与感性的艺术相结合,才能创作出点击率高、推广效果好的广告。
互联网时代,精准营销势在必行,这需要企业和营销人员更好地定位目标群体,掌握分析大数据的技术,结合创意进行精准营销。
保证精准营销更”精准“,主要是需要建立精准的人群画像和用户标签系统,即所谓的千人千面。千人千面就是建立在营销自动化基础上的个性化营销。1,最小颗粒度的洞察 - 客户360°画像
每一个客户都独一无二,如果仔细去看每一个客户个体,人人都有不同特征。无论是基础的客户档案、多种身份、特征标签还是消费记录、互动记录,这些信息都同等重要并合力构成一个客户的360°画像。
2,人群细分
基于每一个客户个体的数据洞察并不意味营销一定要区别对待每一个人,更实际的是区别对待每一群人,每一群“相似”的人,这要求品牌具备人群细分的能力。
具有一个或多个相同特征的人构成一个细分,细分是大部分精准营销的目标,也是客户特征分析的颗粒度。具体细分能力是分析洞察和精准营销的基础。
3,人群特征分析
人群特征分析帮助品牌回答如下的问题:不同特征维度(例如人口属性、消费习惯、会员等级)的人群分布和数量在一定时间段内符合特定特征的人数变化。
4,消费行为特征分析
消费行为是客户用“钱”表达出来的意愿,因此展现的客户特征更加真实可信,在数据分析中有更高的权重。
通过消费行为数据,品牌可以了解客户的购买力、购买习惯(可分别从时间、场所和渠道角度)、商品或服务的偏好(品牌、品类、款式风格等偏好)。结合特定的数据挖掘模型,品牌还可以基于历史消费行为,来预测未来消费的可能性。
5,非消费行为特征分析
消费行为数据含金量很高,但量级远低于非消费行为数据。当具备了收集和整理非消费行为数据的能力后,品牌需要对积累的大量数据进行分类、加工和分析,形成客户洞察。
这些洞察可更好的优化引导到消费转化的策略,或把相同人群的消费和非消费特征进行比较,以形成新的洞察(例如发现高潜力的潜在高消费人群)。
6,组合分析
在具备数据和不同维度的分析工具后,需进一步将不同维度的分析进行组合,以产生新的洞察。
例如:
- 分析不同人群的同维度分析结果,找出人群差异或行为表现和人群特征的关系。
- 一定时间周期内,特征人群的数量变化,行为或者特征的变化趋势
- 特定行为分析路径中,对特定步骤或人群的数据下钻,找到更下一层的特征和行为原因
总之,千人千面是建立在有足够数据分析能力基础上的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)