1、模糊统计
模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。对于不同的试验者,清晰集合 A3可以有不同的边界,但它们都对应于同一个模糊集A。模糊统计法的计算步骤是:在每次统计中, vo是固定的,A3的值是可变的,作 n次试验,其模糊统计可按下式进行计算
v0对 A 的隶属频率 = v0∈A 的次数 / 试验总次数 n
随着 n的增大,隶属频率也会趋向稳定,这个稳定值就是 vo对A 的隶属度值。这种方法较直观地反映了模糊概念中的隶属程度,但其计算量相当大。
2、例证
例证法的主要思想是从已知有限个μA的值,来估计论域 U 上的模糊子集 A 的隶属函数。如论域 U代表全体人类,A 是“高个子的人”。显然 A 是一个模糊子集。为了确定μA,先确定一个高度值 h,然后选定几个语言真值(即一句话的真实程度)中的一个来回答某人是否算“高个子”。
如语言真值可分为“真的”、“大致真的”、“似真似假”、“大致假的”和“假的”五种情况,并且分别用数字1、075、05、025、0来表示这些语言真值。对 n个不同高度h1、h2、…、hn都作同样的询问,即可以得到 A 的隶属度函数的离散表示。
3、专家经验
专家经验法是根据专家的实际经验给出模糊信息的处理算式或相应权系数值来确定隶属函数的一种方法。在许多情况下,经常是初步确定粗略的隶属函数,然后再通过“学习”和实践检验逐步修改和完善,而实际效果正是检验和调整隶属函数的依据。
4、二元对比排序
二元对比排序法是一种较实用的确定隶属度函数的方法。它通过对多个事物之间的两两对比来确定某种特征下的顺序,由此来决定这些事物对该特征的隶属函数的大体形状。二元对比排序法根据对比测度不同,可分为相对比较法、对比平均法、优先关系定序法和相似优先对比法等。
参考资料来源: 百度百科-隶属度函数
同C语言类似,LabVIEW中的变量根据作用域的不同也分为两种类型,即局部变量和全局变量,前者仅能在当前VI程序中使用,而后者可以在多个文件中使用。
LabVIEW中可以通过多种方式创建全局变量。
( 1 ) 方法1
在LabVIEW编程环境中,选择菜单“文件”-->“新建”,d出新建文件对话框,中选择全局变量,即可打开一个全局变量的VI程序,当然这个VI程序只有前面板,在前面板上放置你需要的变量控件,每个变量控件即可代表一个全局变量。
( 2 ) 方法2
如果已经打开了一个普通的VI程序,可以在程序框图右键菜单的函数模板上创建,在函数模板中选择“编程”-->“结构”-->“全局变量”,将全局变量放到程序框图中后,双击该图标,通过这种方法同样可打开一个只包含前面板的VI全局变量程序,后续 *** 作同第一种方法相同。
模糊集合、隶属函数是模糊数学的基本概念。经典集合论开宗明义地规定:对于给定集A,论域U中的任一元素X那么属于A,要么不属于A,二者必居其一。这就使数学对事物类属、性态关系的描述,建立在“是”或“非”(用0表示非,用1表示是,记为{0,1})上。模糊集合论则把这种类属、性态非此即彼的断定转换为对类属、性态程度的量化分析,并用“隶属度”的概念来刻划某元素属于某类的程度。
设U是一个给定的论域,若对于其中任何一个元素X,都有一个函数μA(X)与之对应,且满足0≤μA(X)≤1,则称μA(X)为隶属函数,集合A称为由μA(X)所确定的U上的模糊集合。μA(X)的大小反映X对于模糊集合A的隶属程度,μA(X)的值接近1,表示X隶属于A的程度很高;μA(X)的值接近0,表示X隶属于A的程度很低。
就隶属度、隶属函数来说,用1和0来说明元素对集合“属于”和“不属于”的隶属关系,这是明晰的一面;同时又用介于1和0之间的实数值来刻划元素对集合隶属关系的程度,这又是模糊的一面。这种方法上的两重性使模糊集合论在处理模糊现象时具有灵活辨证的特点,对于那些类属、性态缺乏明确判据的对象,人们就可通过模糊集合论的隶属函数、隶属度的分析,尽可能地逼近它,用以量见质的数学分析来实现由模糊向精确的转化。
例一
A(x )=表示模糊集“年老”的隶属函数,A表示模糊集“年老”,当年龄x≤50时A(x)=0表明x不属于模糊集A(即“年老”),当x ≥100时,A(x)=1表明x 完全属于A,当50くx〈100时,0〈A(x)〈1,且x越接近100,A(x)越接近1,x属于A的程度就越高。这样的表达方法显然比简单地说:“100岁以上的人是年老的,50岁以下的人就不年老。”更为合理。
例二
按照模糊综合分析法,我们对某企业效绩进行评价。
1设因素集U:U={u1,u2,……u9}
综合我国现行评价体系和平衡记分法(SEC),我们选取了u1(净资产收益状况)、u2(资产营运状况)、u3(长期偿债能力)、u4(短期偿债能力)。U5(销售增长状况),u6(市场占有能力)、u7(技术能力)、u8(发展创新能力)、u9(学习能力)9个指标为反映企业效绩的主要指标。其中,u1、u2、u3、u4、u5是财务业绩方面的指标,原来都用精确的比率指标反映,但对它们适当地模糊化更能客观真实地反映企业效绩。例如,在评价企业短期偿债能力时,该企业流动比率为18,但专家们发现该企业存货数额庞大,占了流动资产的较大部分,说明其资产的流动性并不好,因而仍可评定该指标为较低等级。U6是客户方面业绩指标,u7内部经营过程方面业绩指标,u8、u9是学习与增长方面业绩指标。
2设评价集V={v1,v2……v4} 。简便起见,我们设v1:优秀,v2:良好,v3:平均,v4:较差。
3我们选取了该企业的注册会计师、熟悉该企业情况的专家组成评判组,得到评价矩阵
4根据专家意见,我们确定权重集A为:
5按照M(,,+)模型
所以,根据最大隶属度原则,该企业效绩评定为“良好”。事后,该企业领导认为这个评价结果比较符合实际情况。
以上就是关于隶属度函数的隶属度函数及其确定方法分类全部的内容,包括:隶属度函数的隶属度函数及其确定方法分类、labview模糊控制语言变量和隶属函数是一样的吗、模糊集合和隶属函数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)