技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
数据集:
让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:
import seaborn as sns # v0.11.2 import matplotlib.pyplot as plt # v3.4.2 sns.set(style='darkgrid', context='talk', palette='rainbow')df = sns.load\_dataset('tips') df.head()技巧1: plt.subplots()
绘制多个子图的一种简单方法是使用 plt.subplots() 。
这是绘制 2 个并排子图的示例语法:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) sns.boxplot(data=df, x='tip', ax=ax[1])
在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。
例如,我们可以像这样为每个子图添加标题:
fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) ax[0].set\_title("Histogram") sns.boxplot(data=df, x='tip', ax=ax[1]) ax[1].set\_title("Boxplot")
在循环中将所有数值变量用同一组图表示:
numerical = df.select\_dtypes('number').columnsfor col in numerical: fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x=col, ax=ax[0]) sns.boxplot(data=df, x=col, ax=ax[1]) 技巧2: plt.subplot()
另一种可视化多个图形的方法是使用 plt.subplot(), 末尾没有 s
语法与之前略有不同:
plt.figure(figsize=(10,4)) ax1 = plt.subplot(1,2,1) sns.histplot(data=df, x='tip', ax=ax1) ax2 = plt.subplot(1,2,2) sns.boxplot(data=df, x='tip', ax=ax2)
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax)
我们同样能定制子图形。例如加个 title
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax) ax.set\_title(f"Boxplot of {col}")
通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
技巧3: plt.tight_layout()
在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,
如下所示:
categorical = df.select\_dtypes('category').columnsplt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax)
顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用 plt.tight_layout 很方便
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.tight\_layout()
专业 看起来更好了。
技巧4: plt.suptitle()
真个图形添加标题:
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.suptitle('Category counts for all categorical variables') plt.tight\_layout()此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。
到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持!
调查报告一般由标题和正文两部分组成。(一)标题。标题可以有两种写法。一种是规范化的标题格式,即“发文主题”加“文种”,基本格式为“××关于××××的调查报告”、“关于××××的调查报告”、“××××调查”等。另一种是自由式标题,包括陈述式、提问式和正副题结合使用三种。
(二)正文。正文一般分前言、主体、结尾三部分。
1.前言。有几种写法:第一种是写明调查的起因或目的、时间和地点、对象或范围、经过与方法,以及人员组成等调查本身的情况,从中引出中心问题或基本结论来;第二种是写明调查对象的历史背景、大致发展经过、现实状况、主要成绩、突出问题等基本情况,进而提出中心问题或主要观点来;第三种是开门见山,直接概括出调查的结果,如肯定做法、指出问题、提示影响、说明中心内容等。前言起到画龙点睛的作用,要精练概括,直切主题。
2.主体。这是调查报告最主要的部分,这部分详述调查研究的基本情况、做法、经验,以及分析调查研究所得材料中得出的各种具体认识、观点和基本结论。
3.结尾。结尾的写法也比较多,可以提出解决问题的方法、对策或下一步改进工作的建议;或总结全文的主要观点,进一步深化主题;或提出问题,引发人们的进一步思考;或展望前景,发出鼓舞和号召。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)