MyCat批量插入

MyCat批量插入,第1张

web项目使用 mybatis+mycat+mysql 的结构。

mycat作为中间件,mysql 使用多库分表

存在两张表: t_table (表的元数据信息) 和 t_table_field (表的字段信息)。

逻辑上, t_table_field 是作为 t_table 的子表。

t_table_field 某业务需求,为了减少 mybatis <>mycat 之间的网络IO,考虑使用批量插入数据。

mycat要使用批量插入数据,需要注意一下两点:

sql需要指明 Catlet -> BatchInsertSequence

sequence_db_conf.properties

schema.xml

t_table 和 t_table_field 表分了2个节点,rule 是根据ID取模(id % 2)分片。

t_table_field 表的配置要声明 primaryKey autoIncrement 属性。

MyCat实际发送到MySQL的SQL是组装上 ID 字段的

参考: https://www.jianshu.com/p/5e0062f6cf62

图中是两组分片,红色我们称为shard1,蓝色我们称为shard2

51 52是服务器

两个3307互为主从(双主),3309是本地3307的从库

说明:没有明确说明是只在某一个节点上做的,就是两个节点都做

两台虚拟机 db01 db02

每台创建四个mysql实例:3307 3308 3309 3310

mysql软件我们之前已完成二进制安装,直接初始化即可

我们server-id规划为:db01上是7/8/9/10,db02上是17/18/19/20

"箭头指向谁是主库"

10.0.0.51:3307<-----> 10.0.0.52:3307

10.0.0.51:3309------> 10.0.0.51:3307

10.0.0.52:3309------> 10.0.0.52:3307

两个分片,每个分片四个mysql节点

shard1:

Master:10.0.0.51:3307

slave1:10.0.0.51:3309

Standby Master:10.0.0.52:3307

slave2:10.0.0.52:3309

shard2:

Master:10.0.0.52:3308

slave1:10.0.0.52:3310

Standby Master:10.0.0.51:3308

slave2:10.0.0.51:3310

shard1

10.0.0.51:3307 <----->10.0.0.52:3307

db02

db01

db02

10.0.0.51:3309 ------>10.0.0.51:3307

db01

10.0.0.52:3309 ------>10.0.0.52:3307

db02

shard2

10.0.0.52:3308 <----->10.0.0.51:3308

db01

db02

db01

10.0.0.52:3310 ----->10.0.0.52:3308

db02

10.0.0.51:3310 ----->10.0.0.51:3308

db01

这个复制用户在谁上建都行

注:如果中间出现错误,在每个节点进行执行以下命令

常见方案:

360 Atlas-Sharding 360

Alibaba cobar 阿里

Mycat 开源

TDDL 淘宝

Heisenberg 百度

Oceanus 58同城

Vitess 谷歌

OneProxy

DRDS 阿里云

我们装的是openjdk,不是官方的那个

Mycat-server-xxxxx.linux.tar.gz

http://dl.mycat.io/

配置环境变量

我们mycat的命令也是在bin目录下

启动

8066就是对外提供服务的端口,9066是管理端口

连接mycat:

默认123456

db01:

我们一般先把原schema.xml备份,然后自己新写一个:

xml和html看起来差不多,xml是从下往上调用的

前三行我们不用看,直接从第四行schema开始看起:

定义了schema,然后以/schema结尾

为什么要用逻辑库?

业务透明化

此配置文件就是实现读写分离的配置

重启mycat

读写分离测试

总结:

以上案例实现了1主1从的读写分离功能,写 *** 作落到主库,读 *** 作落到从库.如果主库宕机,从库不能在继续提供服务了。

我们推荐这种架构

一写三读,

不设置双写的原因是:性能没提升多少,反而引起主键冲突的情况

配置文件:

之后重启:mycat restart

真正的 writehost:负责写 *** 作的writehost

standby writeHost :和readhost一样,只提供读服务

我们此处写了两个writehost,默认使用第一个

当写节点宕机后,后面跟的readhost也不提供服务,这时候standby的writehost就提供写服务,

后面跟的readhost提供读服务

测试:

读写分离测试

对db01 3307节点进行关闭和启动,测试读写 *** 作

结果应为另一台(52)的3307(17)是写,3309(19)是读

一旦7号节点恢复,此时因为7落后了,写节点仍是17

balance属性

负载均衡类型,目前的取值有3种:

writeType属性

负载均衡类型,目前的取值有2种:

switchType属性

-1 表示不自动切换

1 默认值,自动切换

2 基于MySQL主从同步的状态决定是否切换 ,心跳语句为 show slave status

datahost其他配置

<dataHost name="localhost1" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="native" switchType="1">

maxCon="1000":最大的并发连接数

minCon="10" :mycat在启动之后,会在后端节点上自动开启的连接线程,长连接,好处是连接速度快,弊端是占内存

tempReadHostAvailable="1"

这个一主一从时(1个writehost,1个readhost时),可以开启这个参数,如果2个writehost,2个readhost时

<heartbeat>select user()</heartbeat> 监测心跳

其他参数sqlMaxLimit自动分页,必须在启用分表的情况下才生效

创建测试库和表:

我们重启mycat后连接到8066

发现跟一个库一样,实际上已经分到不同的物理硬件上了

分片:对一个"bigtable",比如说t3表

热点数据表 核心表

(1)行数非常多,800w下坡

(2)访问非常频繁

分片的目的:

(1)将大数据量进行分布存储

(2)提供均衡的访问路由

分片策略:

范围 range 800w 1-400w 400w01-800w 不适用于业务访问不均匀的情况

取模 mod(取余数) 和节点的数量进行取模

枚举 按枚举的种类分,如移动项目按省份分

哈希 hash

时间 流水

优化关联查询(否则join的表在不同分片上,效率会比单库还要低)

全局表

ER分片

案例:移动统一:先拆出边缘业务,再按地域分片,但对应用来说是统一的

vim rule.xml

<tableRule name="auto-sharding-long">

<rule>

<columns>id</columns>

<algorithm>rang-long</algorithm>

</rule>

<function name="rang-long"

class="io.mycat.route.function.AutoPartitionByLong">

<property name="mapFile">autopartition-long.txt</property>

</function>

===================================

vim autopartition-long.txt

0-10=0

11-20=1

创建测试表:

mysql -S /data/3307/mysql.sock -e "use taobaocreate table t3 (id int not null primary key auto_increment,name varchar(20) not null)"

mysql -S /data/3308/mysql.sock -e "use taobaocreate table t3 (id int not null primary key auto_increment,name varchar(20) not null)"

测试:

重启mycat

mycat restart

mysql -uroot -p123456 -h 127.0.0.1 -P 8066

insert into t3(id,name) values(1,'a')

insert into t3(id,name) values(2,'b')

insert into t3(id,name) values(3,'c')

insert into t3(id,name) values(4,'d')

insert into t3(id,name) values(11,'aa')

insert into t3(id,name) values(12,'bb')

insert into t3(id,name) values(13,'cc')

insert into t3(id,name) values(14,'dd')

取余分片方式:分片键(一个列)与节点数量进行取余,得到余数,将数据写入对应节点

vim schema.xml

<table name="t4" dataNode="sh1,sh2" rule="mod-long" />

vim rule.xml

<property name="count">2</property>

准备测试环境

创建测试表:

mysql -S /data/3307/mysql.sock -e "use taobaocreate table t4 (id int not null primary key auto_increment,name varchar(20) not null)"

mysql -S /data/3308/mysql.sock -e "use taobaocreate table t4 (id int not null primary key auto_increment,name varchar(20) not null)"

重启mycat

mycat restart

测试:

mysql -uroot -p123456 -h10.0.0.52 -P8066

use TESTDB

insert into t4(id,name) values(1,'a')

insert into t4(id,name) values(2,'b')

insert into t4(id,name) values(3,'c')

insert into t4(id,name) values(4,'d')

分别登录后端节点查询数据

mysql -S /data/3307/mysql.sock

use taobao

select * from t4

mysql -S /data/3308/mysql.sock

use taobao

select * from t4

t5 表

id name telnum

1 bj 1212

2 sh 22222

3 bj 3333

4 sh 44444

5 bj 5555

sharding-by-intfile

vim schema.xml

<table name="t5" dataNode="sh1,sh2" rule="sharding-by-intfile" />

vim rule.xml

<tableRule name="sharding-by-intfile">

<rule><columns>name</columns>

<algorithm>hash-int</algorithm>

</rule>

</tableRule>

<function name="hash-int" class="org.opencloudb.route.function.PartitionByFileMap">

<property name="mapFile">partition-hash-int.txt</property>

<property name="type">1</property>

<property name="defaultNode">0</property>

</function>

partition-hash-int.txt 配置:

bj=0

sh=1

DEFAULT_NODE=1

columns 标识将要分片的表字段,algorithm 分片函数, 其中分片函数配置中,mapFile标识配置文件名称

准备测试环境

mysql -S /data/3307/mysql.sock -e "use taobaocreate table t5 (id int not null primary key auto_increment,name varchar(20) not null)"

mysql -S /data/3308/mysql.sock -e "use taobaocreate table t5 (id int not null primary key auto_increment,name varchar(20) not null)"

重启mycat

mycat restart

mysql -uroot -p123456 -h10.0.0.51 -P8066

use TESTDB

insert into t5(id,name) values(1,'bj')

insert into t5(id,name) values(2,'sh')

insert into t5(id,name) values(3,'bj')

insert into t5(id,name) values(4,'sh')

insert into t5(id,name) values(5,'tj')

a b c d

join

t

select t1.name ,t.x from t1

join t

select t2.name ,t.x from t2

join t

select t3.name ,t.x from t3

join t

使用场景:

如果你的业务中有些数据类似于数据字典,比如配置文件的配置,

常用业务的配置或者数据量不大很少变动的表,这些表往往不是特别大,

而且大部分的业务场景都会用到,那么这种表适合于Mycat全局表,无须对数据进行切分,

要在所有的分片上保存一份数据即可,Mycat 在Join *** 作中,业务表与全局表进行Join聚合会优先选择相同分片内的全局表join,

避免跨库Join,在进行数据插入 *** 作时,mycat将把数据分发到全局表对应的所有分片执行,在进行数据读取时候将会随机获取一个节点读取数据。

vim schema.xml

<table name="t_area" primaryKey="id" type="global" dataNode="sh1,sh2" />

后端数据准备

mysql -S /data/3307/mysql.sock

use taobao

create table t_area (id int not null primary key auto_increment,name varchar(20) not null)

mysql -S /data/3308/mysql.sock

use taobao

create table t_area (id int not null primary key auto_increment,name varchar(20) not null)

重启mycat

mycat restart

测试:

mysql -uroot -p123456 -h10.0.0.52 -P8066

use TESTDB

insert into t_area(id,name) values(1,'a')

insert into t_area(id,name) values(2,'b')

insert into t_area(id,name) values(3,'c')

insert into t_area(id,name) values(4,'d')

A

join

B

为了防止跨分片join,可以使用E-R模式

A join B

on a.xx=b.yy

join C

on A.id=C.id

<table name="A" dataNode="sh1,sh2" rule="mod-long">

<childTable name="B" joinKey="yy" parentKey="xx" />

</table>

MyCat 官方推荐使用 HAProxy 做 MyCat 的高可用负载均衡代理。

HAProxy 是一款提供高可用性、负载均衡以及基于 TCP(第四层)和 HTTP(第七层)应用的代理软件,支持虚拟主机,它是免费、快速并且可靠的一种解决方案。

MyCat 服务主机上需要开放检测端口用来检测 mycat 服务的状态,提供给 HAProxy 对 MyCat 的服务状态进行检测判断。

检测 mycat 服务状态以通过xinetd 来实现, 使得HAProxy 可以用 httpchk 来检测 MyCat 的存活状态。

1、安装xinetd:

2、修改配置

检查是否有includedir /etc/xinetd.d,如果没有该配置需要加上:

3、检查 /etc/xinetd.d 目录

检查是否有 /etc/xinetd.d 目录,如果没有该目录需要加上:

4、配置存活状态检测

增加 MyCat 存活状态检测服务配置:

5、配置服务脚本

添加服务脚本/usr/local/bin/mycat_status:

6、添加可执行权限

7、配置启动服务

在 /etc/services 中加入 mycat_status 服务:

保存后重启:

9、开放端口

MyCat 服务主机的防火墙上打开 48700 端口:

设置开机启动:

[:[port]] 指定将客户端连接请求发往此服务器时的目标端口,此为可选项

[param*] 为此 server 设定的一系列参数,均为可选项,参数比较多,下面仅说明几个常用的参数:

weight: 权重,默认为 1,最大值为 256, 0 表示不参与负载均衡

backup: 设定为备用服务器,仅在负载均衡场景中的其他 server 均不可以启用此 server;

check: 启动对此 server 执行监控状态检查,其可以借助于额外的其他参数完成更精细的设定;

inter: 设定监控状态检查的时间间隔,单位为毫秒,默认为 2000,

也可以使用 fastinter 和 downinter 来根据服务器端专题优化此事件延迟

rise: 设置 server 从离线状态转换至正常状态需要检查的次数(不设置的情况下,默认值为 2);

fall: 设置 server 从正常状态转换至离线状态需要检查的次数(不设置的情况下,默认值为 3);

cookie: 为指定 server 设定 cookie 值,此处指定的值将会在请求入站时被检查,第一次为此值挑选的 server 将会被后续的请求所选中,其目的在于实现持久连接的功能;

maxconn: 指定此服务器接受的最大并发连接数,如果发往此服务器的连接数目高于此处指定的值,其将被放置于请求队列,以等待其他连接被释放。

默认情况下 haproxy 是没有日志的,如果有需要则配置系统的 syslog, 也就是 linux 系统中的 rsyslog 服务。

修改配置

增加haproxy日志配置文件

修改配置:

配置生效:


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11369396.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-15
下一篇 2023-05-15

发表评论

登录后才能评论

评论列表(0条)

保存