List、set、Map的底层实现原理

List、set、Map的底层实现原理,第1张

java 中集合类的关系

参考文献:

http://zhangshixi.iteye.com/blog/674856l

https://www.cnblogs.com/leesf456/p/5308358.html

ArrayList是List接口的可变数组非同步实现,并允许包括null在内的所有元素

底层使用数组实现

该集合是可变长度数组,数组扩容时,会将老数组中的元素重新拷贝一份到新的数组中,每次数组容量增长大约是其容量的1.5倍,这种 *** 作的代价很高。

采用了Fail-Fast机制,面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险

remove方法会让下标到数组末尾的元素向前移动一个单位,并把最后一位的值置空,方便GC

参考文献:

1. http://www.cnblogs.com/ITtangtang/p/3948610.htmll

2. https://www.cnblogs.com/leesf456/p/5308843.html

LinkedList是List接口的双向链表非同步实现,并允许包括null在内的所有元素。

底层的数据结构是基于双向链表的,该数据结构我们称为节点

双向链表节点对应的类Node的实例,Node中包含成员变量:prev,next,item。其中,prev是该节点的上一个节点,next是该节点的下一个节点,item是该节点所包含的值。

它的查找是分两半查找,先判断index是在链表的哪一半,然后再去对应区域查找,这样最多只要遍历链表的一半节点即可找到

参考文献: http://zhangshixi.iteye.com/blog/672697

参考文献: http://blog.csdn.net/lizhongkaide/article/details/50595719

HashMap是基于哈希表的Map接口的非同步实现,允许使用null值和null键,但不保证映射的顺序。

底层使用数组实现,数组中每一项是个单向链表,即数组和链表的结合体;当链表长度大于一定阈值时,链表转换为红黑树,这样减少链表查询时间。

HashMap在底层将key-value当成一个整体进行处理,这个整体就是一个Node对象。HashMap底层采用一个Node[]数组来保存所有的key-value对,当需要存储一个Node对象时,会根据key的hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Node时,也会根据key的hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Node。

HashMap进行数组扩容需要重新计算扩容后每个元素在数组中的位置,很耗性能

采用了Fail-Fast机制,通过一个modCount值记录修改次数,对HashMap内容的修改都将增加这个值。迭代器初始化过程中会将这个值赋给迭代器的expectedModCount,在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map,马上抛出异常

参考文献: http://blog.csdn.net/zheng0518/article/details/42199477

Hashtable是基于哈希表的Map接口的同步实现,不允许使用null值和null键

底层使用数组实现,数组中每一项是个单链表,即数组和链表的结合体

Hashtable在底层将key-value当成一个整体进行处理,这个整体就是一个Entry对象。Hashtable底层采用一个Entry[]数组来保存所有的key-value对,当需要存储一个Entry对象时,会根据key的hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据key的hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

synchronized是针对整张Hash表的,即每次锁住整张表让线程独占

参考文献: http://blog.csdn.net/zheng0518/article/details/42199477

ConcurrentHashMap允许多个修改 *** 作并发进行,其关键在于使用了锁分离技术。

它使用了多个锁来控制对hash表的不同段进行的修改,每个段其实就是一个小的hashtable,它们有自己的锁。只要多个并发发生在不同的段上,它们就可以并发进行。

ConcurrentHashMap在底层将key-value当成一个整体进行处理,这个整体就是一个Entry对象。Hashtable底层采用一个Entry[]数组来保存所有的key-value对,当需要存储一个Entry对象时,会根据key的hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据key的hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

与HashMap不同的是,ConcurrentHashMap使用多个子Hash表,也就是段(Segment)

ConcurrentHashMap完全允许多个读 *** 作并发进行,读 *** 作并不需要加锁。如果使用传统的技术,如HashMap中的实现,如果允许可以在hash链的中间添加或删除元素,读 *** 作不加锁将得到不一致的数据。ConcurrentHashMap实现技术是保证HashEntry几乎是不可变的。

参考文献: http://zhangshixi.iteye.com/blog/673143l

HashSet由哈希表(实际上是一个HashMap实例)支持,不保证set的迭代顺序,并允许使用null元素。

基于HashMap实现,API也是对HashMap的行为进行了封装,可参考HashMap

参考文献: http://zhangshixi.iteye.com/blog/673789l

LinkedHashMap继承于HashMap,底层使用哈希表和双向链表来保存所有元素,并且它是非同步,允许使用null值和null键。

基本 *** 作与父类HashMap相似,通过重写HashMap相关方法,重新定义了数组中保存的元素Entry,来实现自己的链接列表特性。该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而构成了双向链接列表。

参考文献: http://zhangshixi.iteye.com/blog/673319l

对于LinkedHashSet而言,它继承与HashSet、又基于LinkedHashMap来实现的。LinkedHashSet底层使用LinkedHashMap来保存所有元素,它继承与HashSet,其所有的方法 *** 作上又与HashSet相同。

2021-11-10

列表是一种非连续的存储容器,有多个节点组成,节点通过一些变量记录彼此之间的关系

单链表和双链表就是列表的两种方法。

原理:A、B、C三个人,B懂A的电话,C懂B的电话只是单方知道号码,这样就形成了一个单链表结构。

如果C把自己的号码给B,B把自己的号码给A,因为是双方都知道对方的号码,这样就形成了一个双链表结构

如果B换号码了,他需要通知AC,把自己的号码删了,这个过程就是列表的删除 *** 作。

在Go语言中,列表使用 container/list 包来实现,内部的实现原理是双链表,列表能够高效地进行任意位置的元素插入和删除 *** 作。

列表初始化的两种办法

列表没有给出具体的元素类型的限制,所以列表的元素可以是任意类型的,

例如给列表中放入了一个 interface{} 类型的值,取出值后,如果要将 interface{} 转换为其他类型将会发生宕机。

双链表支持从队列前方或后方插入元素,分别对应的方法是 PushFront 和 PushBack。

列表插入函数的返回值会提供一个 *list.Element 结构,这个结构记录着列表元素的值以及与其他节点之间的关系等信息,从列表中删除元素时,需要用到这个结构进行快速删除。

遍历完也能看到最后的结果

学习地址: http://c.biancheng.net/view/35.html

原理就是线性表的插入,删除,和格式化。

由于数组是一组连续且数据类型相同的数,所以它在内存中的存储方式是以线性表的方式存储的,所以它的各项 *** 作的原理和线性表的原理是一样的。

插入算法:

int insertlist(seqlist *l,int i,elemtype b)

{

if(i>L->len)||(i<1)||(L->len>=L->listsize)

reuturn error//如果位置越界,或空间不够,出错处理

else

for(j=L->lenj>=ij++)

L->elem[j+1]=L->elem[j] //将从第i个位置的元素往后移一位

L->elem[i]=b

L->len=L->len+1 //表的长度加一

return ture

}

删除的算法:

int deletelist(seqlist *L,int i)

{

if(i>L->len)||(i<1)||(L->len>=L->listsize)

reuturn error //如果位置越界,或线性表中无元素,则出错处理

for(j=ij<=(L->len-1)j++)

L-<elem[j]=L-<elem[j+1]//找到这个元素,将其删除,并将从第i为元素往前移一位

L->len--// 表的长度减一

return ture

}

其他的算法都可以根据这两个算法推出来。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11435854.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存