Python其实很简单 第十九章 Pandas之Series与DataFrame

Python其实很简单 第十九章 Pandas之Series与DataFrame,第1张

19.1安装Anaconda

Anaconda是Python的一个开源发行版本,它预装了丰富的第三方库,而且主要面向科学计算和数据分析,使用起来要比原版的Python更省时省力。

Anaconda官方下载网址为:https://www.continuum.io/downloads。下载和安装的方法很简单,若有问题可以在网上搜索相关内容学习解决。

安装Anaconda之后,就会发现在Anaconda目录下同时安装了Jupyter Notebook、Spyder等工具,我们接下来主要使用Spyder进行开发。关于Spyder的使用方法非常简单,大家也可以去网上搜索学习。

虽然Anaconda已经预装了很多常用的包,但有时我们也需要自己安装一些包。可以在开始菜单中选择“Anaconda Anaconda Prompt”命令,在命令行输入conda install ( 代表包名)即可安装,也可以输入pip install 。

19.2数据分析包Pandas

Pandas是Python的一个数据分析包,Anaconda安装时已经附带安装了Pandas包。

Pandas数据结构有三种:Series(一维数组)、DataFrame(二维数组)和Panel(三维数组),其中最常用的是前两种数据结构。

19.2.1 Series

Series(序列)用于存储一行或一列数据,以及与之相关的索引的集合。

语法格式如下:

Series([数据1,数据2,......], index=[索引1,索引2,......])

例:

from pandas import Series

s=Series(['张三','李四','王五'],index=[1,2,3])

print(s)

输出结果如下:

1 张三

2 李四

3 王五

dtype: object

上面建立序列时指定了索引,若不指定,则默认的索引值从0开始。如下:

s=Series(['张三','李四','王五'])

输出结果为:

0 张三

1 李四

2 王五

dtype: object

索引值也可以为字符串。如下:

from pandas import Series

s=Series(['张三','李四','王五'],index=['A','B','C'])

print(s)

输出结果为:

A 张三

B 李四

C 王五

dtype: object

1、访问序列

(1)可以通过索引访问序列,如:

from pandas import Series

s=Series(['张三','李四','王五'])

print(s)

print(s[0])

print(s[1:])

运行结果如下:

0 张三

1 李四

2 王五

dtype: object #print(s)输出

张三 #print(s[0])输出

1 李四

2 王五

dtype: object #print(s[1:])输出

(2)通过值获取索引值

from pandas import Series

s=Series(['张三','李四','王五'],index=['A','B','C'])

print(s.index[s.values=='李四'])

运行结果:

Index(['B'], dtype='object')

(3)判断值是否存在

from pandas import Series

s=Series(['张三','李四','王五'],index=['A','B','C'])

f='李四' in s.values

print(f)

运行结果:

True

(4)定位获取

from pandas import Series

s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])

print(s[[0,2,1]])

运行结果:

A 张三

C 王五

B 李四

dtype: object

2、修改序列

(1)追加序列,如:

from pandas import Series

s=Series(['张三','李四','王五'],index=['A','B','C'])

s1=Series(['孙六'],index=['D'])

s=s.append(s1)

print(s)

运行结果:

A 张三

B 李四

C 王五

D 孙六

dtype: object

(2)修改序列的值

from pandas import Series

s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])

s[1]='李飞'

print(s)

运行结果:

A 张三

B 李飞

C 王五

D 孙六

dtype: object

不知道索引,仅知道要修改的值,也可通过值查找到索引后,再修改序列的值。如:

s[s.index[s.values=='李四']]='李飞'

这样也可以将“李四”修改为“李飞。

(3)修改索引

from pandas import Series

s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])

s.index=[0,1,2,3]

print(s)

运行结果:

0 张三

1 李四

2 王五

3 孙六

dtype: object

(4)删除元素

from pandas import Series

s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])

s=s.drop('A')

print(s)

运行结果:

B 李四

C 王五

D 孙六

dtype: object

(5)重新排序

可以按照索引排序,使用sort_index(ascending=True)方法对index进行排序 *** 作。

from pandas import Series

s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])

s=s.sort_index(ascending=False) # ascending=False表示按降序排列

print(s)

运行结果:

D 孙六

C 王五

B 李四

A 张三

dtype: object

(6)重置索引

重置索引可以使用reindex()。如果index列表中的元素多于序列的值,可用fill_value=0这样的语句填充。

s=s.reindex(['D','C','B','A'])

如果index列表中的元素多于序列的值,可用fill_value=0这样的语句填充。

s=s.reindex(['D','C','B','A'], fill_value=0)

19.2.2 DataFrame

DataFrame(数据框架)用于存储多行和多列的数据集合。它是Series的容器,类似于Excel中二维表格。

定义一个DataFrame的语法格式如下:

df=DataFrame({列名1 : 序列1,列名2 : 序列2,.......列名n : 序列n}, index=序列 )

例如,有如下二维表:

姓名

性别

年龄

张三

18

李四

19

王五

17

保存到DataFrame中可以用如下方法:

from pandas import Series

from pandas import DataFrame

name=Series(['张三','李四','王五'])

sex=Series(['男','女','男'])

age=Series([18,19,17])

df=DataFrame({'姓名':name,'性别':sex,'年龄':age})

print(df)

运行结果:

姓名 性别 年龄

0 张三 男 18

1 李四 女 19

2 王五 男 17

从上例可以看出,虽然我们省缺了索引,但系统自动添加了从0开始的索引值。

19.3 DataFrame的基本 *** 作

1、访问方式

(1)获取行

print(df[1:2]) # 获取第1行的值

输出结果:

姓名 性别 年龄

1 李四 女 19

print(df[1:3]) #获取第1行到第2行的值

输出结果:

姓名 性别 年龄

1 李四 女 19

2 王五 男 17

(2)获取列

print(df['姓名']) #获取“姓名”列的值

输出结果:

0 张三

1 李四

2 王五

Name: 姓名, dtype: object

另一种方法:

print(df[df.columns[0:1]]) #先按照索引号获取列名,再按照列名读取

输出结果和上面的方法完全一致。

还有一种情况,是获取唯一值,即将列内的重复值中多余的删除,仅留下互不相同的值。所用的到方法是unique()。

sex1=Series(df['性别'].unique())

print(sex1)

输出结果:

0 男

1 女

dtype: object

(3)获取指定位置的值

print(df.at[1,'姓名']) # 格式为变量名.at[行号,列名]

输出结果:

李四

(4)获取块的值

print(df.iloc[0:2,1:3]) # 格式为变量名.iloc[行号1:行号2, 列号1:列号2]

输出结果:

性别 年龄

0 男 18

1 女 19

print(df.iloc[:,1:2]) #获取“性别”列的值

运行结果:

性别

0 男

1 女

2 男

2、修改、删除、增加行和列

(1)修改列名

print(df.columns)

df.columns=['name','sex','age']

print(df.columns)

输出结果:

Index(['姓名', '性别', '年龄'], dtype='object')

Index(['name', 'sex', 'age'], dtype='object')

可见,列名已经由“姓名、性别、年龄”修改为“age、sex、age”了。但这种修改必须把全部列名都一一列举,不能有遗漏,否则就会出错。如:

df.columns=['name','sex']

此时会报错:ValueError: Length mismatch: Expected axis has 3 elements, new values have 2 elements。

(2)修改行索引

df.index=[1,2,3]

(3)删除行

df.drop(1,axis=0) # axis=0表示行轴,也可以省略

(4)删除列

df.drop(‘性别’,axis=1) # axis=0表示列轴

也可以使用另一种方法:

del df['性别']

(5)增加列

df['电话']=['1111111','2222222','3333333']

print(df)

运行结果:

姓名 性别 年龄 电话

0 张三 男 18 1111111

1 李四 女 19 2222222

2 王五 男 17 3333333

(6)增加行

df.loc[len(df)]=['孙六','男','20']

(7)追加

from pandas import Series

from pandas import DataFrame

name=Series(['张三','李四','王五'])

sex=Series(['男','女','男'])

age=Series([18,19,17])

df=DataFrame({'姓名':name,'性别':sex,'年龄':age}) # 建立DataFrame,变量名为df

name1=Series(['孙六','候七'])

sex1=Series(['男','女'])

age1=Series([19,17])

df1=DataFrame({'姓名':name1,'性别':sex1,'年龄':age1})

# 建立DataFrame,变量名为df1

df=df.append(df1,ignore_index=True)

# 将对df1追加到df后面,参数ignore_index=True表示重新索引

print(df)

运行结果:

姓名 性别 年龄

0 张三 男 18

1 李四 女 19

2 王五 男 17

3 孙六 男 19

4 候七 女 17

pd.Series 主要设置两个参数,data 和 index,如果不设置 index,则 index 从 0 开始递增。除此之外,还可以设置 dtype。

除了直接设置各个字段,还可以将字典作为参数传入,series 会自动将 key 作为 index,将 value 作为 data。

为了保证数据存取的效率,series 的 index 必须是可哈希的。

series 和字典一样,索引和修改的时间复杂度为 。它有两种索引方式,第一种索引方式与字典相同,但强烈不推荐,会导致各种副作用:

在某些情况下,它会产生歧义:

第二种索引方式是采用 .loc 方法,这种写法是推荐的:

注意一个细节:利用 index 做切片时,和 list 或者 array 利用下标切片,不包括末尾元素不同,index 切片是包括 end 元素的。

除了利用 index 切片,Series 也可以用下标切片,此时不包括终点下标对应的元素,表现和 python 惯例一致:

不像字典的 key 是唯一的,Series 支持 index 包含重复元素。但对 Series 做切片时,如果重复的 index 不是相邻的,则会报错:"Cannot get left\right slice bound for non-unique label: 'xxx' "。

因此强烈建议先对 index 排序,这样可以保证切片能够一直能正确运行,并且还能提高索引的效率。

和 numpy 一样,Series 也支持高级索引:

两个 Series 可以相加,只有相同 label 的数据会相加,只存在于其中一个 Series 的数据相加后为 NaN,但也可以指定一方缺失的 label 对应的默认值:

需要注意的是,在 *** 作过程中, series value 的数据类型可能会隐式地被改变,如果不注意,很有可能影响增删的效率,甚至产生错误的结果。

影响效率的例子:

产生错误结果的例子:

DataFrame 还支持广播功能:

可以将 DataFrame 保存为 csv 文件或 json 文件

包括一系列函数:

p.describe() 默认只显示数字列,但也可以设置参数 include='all' 现实所有列。

p.loc['sonia'] 展示 sonia 行

p.loc['sonia', 'age'] 只显示 sonia 的年龄

筛选出女性条目:

增加年龄筛选条件:

DataFrame.mean() 可以按列计算平均值

几种不建议的写法:

p.drop(columns=['mean', ], inplace=True) 用于删除一列或多列, inplace 作用是,设置是否修改原来的 p,如果True,返回 None,原 p 被修改,如果 False,返回被修改后的 DataFrame,同时原 p 保留。

DataFrame 支持所有 numpy 的函数,numpy 函数可以直接施加在 DataFrame 上,例如:

但是,如果需要用到 DataFrame 的 label 对齐特性,例如两个 index 顺序并不相同的 DataFrame 相加,那么 numpy 的函数将直接计算中间的 values,而不会考虑它们 label 对齐的问题。(该问题已经在 pandas 0.2.5 中被修正)

运算中设置 fill_value 可以让表中缺失的数据被 fill_value 代替。

当一个 Series 和一个 DataFrame 相加时,pandas 会默认 Series 是一行,并把它广播到其它行。Series 的 index 会被对应到 DataFrame 的列上,并对齐。如果 Series 的 index 与 DataFrame 的列没关系,那么会扩增 DataFrame,扩增区域对应的数据为 NaN。如果想让 Series 的 index 和 DataFrame 的index 对应,则需要指定 axis=0:

在构建 pandas Series 或者 DataFrame 时,有两种方式可以表示 NaN,一种是 np.NaN ,另一种是python 的 None 对象。 np.NaN 的数据类型是 float ,因此,在 pandas 中,存在 NaN 的对象要么是 float64 的,要么是 object 类型。

pandas 利用如下方法处理缺失数据:

MultiIndex 适用于数组大于二维的情况。所有可以用 Index 的地方,都可以用 MultiIndex 。

MultiIndex Series

MultiIndex DataFrame 利用 from_product 可以方便地创建 MultiIndex。

MultiIndex DataFrame 的索引十分方便

元组配合 slice ,为 MultiIndex DataFrame 做切片:

concat 用于将两个表拼接起来,它适用于两个表有相同的 index 或者有相同的 columns。

concat 也适用于拼接 Series,但是不论是 DataFrame 还是 Series,它不会检查各行的 index 是否重复。

一个解决方案是设置 verify_integrity 参数,它会在遇到两个相同 index 的时候报错。但是这无疑会导致额外的计算,因此除非确实必要,一般不设置它。

设置拼接参数

merge 适用于两个表某 相同,然后所有的融合都基于该列:

merge 默认采取 inner join 的策略,如果以某列为基准,那么最终结果中,只有同时出现在这两列中的数据被保留。

总共有三种merge 的方式:

merge 可以设置 on= 或者 left_on= 、 right_on= 显式指定基准列

当两表中的基准列元素不完全一致时,通过设置 how 有四种 merge 策略:

groupby 按照某个指标聚类,分别计算各类数据

groupby 返回值的属性:

groupby 方法分发。 groupby 返回的对象如果没有实现某个 DataFrame的方法,该对象仍然可以调用,只不过是遍历每个类别,分别调用。

groupby().agg 方法:agg 中以 list/dict 形式传入函数名(或名字的字符串),计算每个组的统计量。

groupby().filter() filter 内传入筛选条件,可以是 lambda 表达式

groupby().transform() transform 内传入变换函数,如 lambda 表达式,变换函数将施加在每个子 group 上,一个经典用例是用它来对每个 group 内部中心化,或者用group 均值代替其中的 NaN。

以 titanic 的例子,我们希望得到这样的表格:有三行,每行代表一个舱位级别;有两列,每列代表一个性别。此时需要用到 pivot_table 。 pivot_table 相当于把 groupby 的结果表示为二维表格。

numpy 和 pandas 可以很好地处理各种格式的时间字符串,将其转化为标准格式。同时提供了一系列方法,对时间序列求区间、采样等等。

本节课将讲解Pandas-Series的重塑(Reshaping)与排序(sorting)。

重塑顾名思义即改变数据的形状。

首先导入所需依赖包

对value排序,返回一个新的Series,新Series的值是排序后的原value在原Series中的整数位置,NaN的位置为-1。(有点绕,通过下面例子图解会比较清晰易懂)

图解argsort:

返回Series中最小值的整数位置。

与Series.idxmin()比较: argmin返回的是最小值的整数位置,idxmin返回的是最小值的索引

返回Series中最大值的整数位置。

与Series.idxmax()比较: argmax返回的是最大值的整数位置,idxmax返回的是最大值的索引

使用输入顺序重新排列索引级别。重新排序MultiIndex的级别。

按值对Series排序。

按索引标签对Series进行排序。

MultiIndex的i级索引和j级索引交换位置。

数据透视,使用MultiIndex Series生成DataFrame。

将类似列表的每个元素转换为行,这些行的索引将重复。

插入元素应在的位置,插入点,原理应该是二分查找。

注意⚠️:Series必须单调排序,即Series必须是已经排好序的。

返回一个展平的ndarray。

重复Series的元素。

返回一个新Series,其中每个元素都连续重复给定次数。

具有单个元素的Series或DataFrames被压缩为标量。具有单列或单行的DataFrame被压缩为Series。否则,对象不变(感觉这个方法用处不大,可以用loc代替)。

创建一个Series的新视图。

注意⚠️:新视图值的修改会影响到原Series。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11546599.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存