本节课将讲解Pandas-Series的重塑(Reshaping)与排序(sorting)。
重塑顾名思义即改变数据的形状。
首先导入所需依赖包
对value排序,返回一个新的Series,新Series的值是排序后的原value在原Series中的整数位置,NaN的位置为-1。(有点绕,通过下面例子图解会比较清晰易懂)
图解argsort:
返回Series中最小值的整数位置。
与Series.idxmin()比较: argmin返回的是最小值的整数位置,idxmin返回的是最小值的索引 。
返回Series中最大值的整数位置。
与Series.idxmax()比较: argmax返回的是最大值的整数位置,idxmax返回的是最大值的索引 。
使用输入顺序重新排列索引级别。重新排序MultiIndex的级别。
按值对Series排序。
按索引标签对Series进行排序。
MultiIndex的i级索引和j级索引交换位置。
数据透视,使用MultiIndex Series生成DataFrame。
将类似列表的每个元素转换为行,这些行的索引将重复。
插入元素应在的位置,插入点,原理应该是二分查找。
注意⚠️:Series必须单调排序,即Series必须是已经排好序的。
返回一个展平的ndarray。
重复Series的元素。
返回一个新Series,其中每个元素都连续重复给定次数。
具有单个元素的Series或DataFrames被压缩为标量。具有单列或单行的DataFrame被压缩为Series。否则,对象不变(感觉这个方法用处不大,可以用loc代替)。
创建一个Series的新视图。
注意⚠️:新视图值的修改会影响到原Series。
导入 Pandas:
查看 Pandas 版本信息:
Pandas 的数据结构:Pandas 主要有 Series(一维数组),DataFrame(二维数组),Panel(三维数组),Panel4D(四维数组),PanelND(更多维数组)等数据结构。其中 Series 和 DataFrame 应用的最为广泛。
Series 是一维带标签的数组,它可以包含任何数据类型。包括整数,字符串,浮点数,Python 对象等。Series 可以通过标签来定位。
DataFrame 是二维的带标签的数据结构。我们可以通过标签来定位数据。这是 NumPy 所没有的。
Pandas 中,Series 可以被看作由 1 列数据组成的数据集。
创建 Series 语法:s = pd.Series(data, index=index),可以通过多种方式进行创建,以下介绍了 3 个常用方法。
从列表创建 Series:
从 Ndarray 创建 Series:
从字典创建 Series:
修改 Series 索引:
Series 纵向拼接:
Series 按指定索引删除元素:
Series 修改指定索引元素:
Series 按指定索引查找元素:
Series 切片 *** 作:
Series 加法运算:
Series 的加法运算是按照索引计算,如果索引不同则填充为 NaN(空值)。
Series 减法运算:
Series的减法运算是按照索引对应计算,如果不同则填充为 NaN(空值)。
Series 乘法运算:
Series 的乘法运算是按照索引对应计算,如果索引不同则填充为 NaN(空值)。
Series 除法运算:
Series 的除法运算是按照索引对应计算,如果索引不同则填充为 NaN(空值)。
Series 求中位数:
Series 求和:
Series 求最大值:
Series 求最小值:
与 Sereis 不同,DataFrame 可以存在多列数据。一般情况下,DataFrame 也更加常用。
通过 NumPy 数组创建 DataFrame:
通过字典数组创建 DataFrame:
查看 DataFrame 的数据类型:
预览 DataFrame 的前 5 行数据:
查看 DataFrame 的后 3 行数据:
查看 DataFrame 的索引:
查看 DataFrame 的列名:
查看 DataFrame 的数值:
查看 DataFrame 的统计数据:
DataFrame 转置 *** 作:
对 DataFrame 进行按列排序:
对 DataFrame 数据切片:
对 DataFrame 通过标签查询(单列):
对 DataFrame 通过标签查询(多列):
对 DataFrame 通过位置查询:
DataFrame 副本拷贝:
判断 DataFrame 元素是否为空:
添加列数据:
根据 DataFrame 的下标值进行更改。:
根据 DataFrame 的标签对数据进行修改:
DataFrame 求平均值 *** 作:
对 DataFrame 中任意列做求和 *** 作:
将字符串转化为小写字母:
将字符串转化为大写字母:
对缺失值进行填充:
删除存在缺失值的行:
DataFrame 按指定列对齐:
CSV 文件写入:
CSV 文件读取:
Excel 写入 *** 作:
Excel 读取 *** 作:
建立一个以 2018 年每一天为索引,值为随机数的 Series:
统计s 中每一个周三对应值的和:
统计s中每个月值的平均值:
将 Series 中的时间进行转换(秒转分钟):
UTC 世界时间标准:
转换为上海所在时区:
不同时间表示方式的转换:
创建多重索引 Series:
构建一个 letters = ['A', 'B', 'C'] 和 numbers = list(range(10))为索引,值为随机数的多重索引 Series。
多重索引 Series 查询:
多重索引 Series 切片:
根据多重索引创建 DataFrame:
创建一个以 letters = ['A', 'B'] 和 numbers = list(range(6))为索引,值为随机数据的多重索引 DataFrame。
多重索引设置列名称:
DataFrame 多重索引分组求和:
DataFrame 行列名称转换:
DataFrame 索引转换:
DataFrame 条件查找:
查找 age 大于 3 的全部信息
** 根据行列索引切片:**
DataFrame 多重条件查询:
查找 age<3 且为 cat 的全部数据。
DataFrame 按关键字查询:
DataFrame 按标签及列名查询。:
DataFrame 多条件排序:
按照 age 降序,visits 升序排列
DataFrame 多值替换:
将 priority 列的 yes 值替换为 True,no 值替换为 False。
DataFrame 分组求和:
使用列表拼接多个 DataFrame:
找出 DataFrame 表中和最小的列:
DataFrame 中每个元素减去每一行的平均值:
DataFrame 分组,并得到每一组中最大三个数之和:
当分析庞大的数据时,为了更好的发掘数据特征之间的关系,且不破坏原数据,就可以利用透视表 pivot_table 进行 *** 作。
透视表的创建:
新建表将 A, B, C 列作为索引进行聚合。
透视表按指定行进行聚合:
将该 DataFrame 的 D 列聚合,按照 A,B 列为索引进行聚合,聚合的方式为默认求均值。
透视表聚合方式定义:
上一题中 D 列聚合时,采用默认求均值的方法,若想使用更多的方式可以在 aggfunc 中实现。
透视表利用额外列进行辅助分割:
D 列按照 A,B 列进行聚合时,若关心 C 列对 D 列的影响,可以加入 columns 值进行分析。
透视表的缺省值处理:
在透视表中由于不同的聚合方式,相应缺少的组合将为缺省值,可以加入 fill_value 对缺省值处理。
在数据的形式上主要包括数量型和性质型,数量型表示着数据可数范围可变,而性质型表示范围已经确定不可改变,绝对型数据就是性质型数据的一种。
绝对型数据定义:
对绝对型数据重命名:
重新排列绝对型数据并补充相应的缺省值:
对绝对型数据进行排序:
对绝对型数据进行分组:
缺失值拟合:
在FilghtNumber中有数值缺失,其中数值为按 10 增长,补充相应的缺省值使得数据完整,并让数据为 int 类型。
数据列拆分:
其中From_to应该为两独立的两列From和To,将From_to依照_拆分为独立两列建立为一个新表。
字符标准化:
地点的名字都不规范(如:londON应该为London)需要对数据进行标准化处理。
删除坏数据加入整理好的数据:
将最开始的 From_to 列删除,加入整理好的 From 和 to 列。
去除多余字符:
如同 airline 列中许多数据有许多其他字符,会对后期的数据分析有较大影响,需要对这类数据进行修正。
格式规范:
在 RecentDelays 中记录的方式为列表类型,由于其长度不一,这会为后期数据分析造成很大麻烦。这里将 RecentDelays 的列表拆开,取出列表中的相同位置元素作为一列,若为空值即用 NaN 代替。
信息区间划分:
班级一部分同学的数学成绩表,如下图所示
但我们更加关心的是该同学是否及格,将该数学成绩按照是否>60来进行划分。
数据去重:
一个列为A的 DataFrame 数据,如下图所示
尝试将 A 列中连续重复的数据清除。
数据归一化:
有时候,DataFrame 中不同列之间的数据差距太大,需要对其进行归一化处理。
其中,Max-Min 归一化是简单而常见的一种方式,公式如下:
Series 可视化:
DataFrame 折线图:
DataFrame 散点图:
DataFrame 柱形图:
19.1安装Anaconda
Anaconda是Python的一个开源发行版本,它预装了丰富的第三方库,而且主要面向科学计算和数据分析,使用起来要比原版的Python更省时省力。
Anaconda官方下载网址为:https://www.continuum.io/downloads。下载和安装的方法很简单,若有问题可以在网上搜索相关内容学习解决。
安装Anaconda之后,就会发现在Anaconda目录下同时安装了Jupyter Notebook、Spyder等工具,我们接下来主要使用Spyder进行开发。关于Spyder的使用方法非常简单,大家也可以去网上搜索学习。
虽然Anaconda已经预装了很多常用的包,但有时我们也需要自己安装一些包。可以在开始菜单中选择“Anaconda Anaconda Prompt”命令,在命令行输入conda install ( 代表包名)即可安装,也可以输入pip install 。
19.2数据分析包Pandas
Pandas是Python的一个数据分析包,Anaconda安装时已经附带安装了Pandas包。
Pandas数据结构有三种:Series(一维数组)、DataFrame(二维数组)和Panel(三维数组),其中最常用的是前两种数据结构。
19.2.1 Series
Series(序列)用于存储一行或一列数据,以及与之相关的索引的集合。
语法格式如下:
Series([数据1,数据2,......], index=[索引1,索引2,......])
例:
from pandas import Series
s=Series(['张三','李四','王五'],index=[1,2,3])
print(s)
输出结果如下:
1 张三
2 李四
3 王五
dtype: object
上面建立序列时指定了索引,若不指定,则默认的索引值从0开始。如下:
s=Series(['张三','李四','王五'])
输出结果为:
0 张三
1 李四
2 王五
dtype: object
索引值也可以为字符串。如下:
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
print(s)
输出结果为:
A 张三
B 李四
C 王五
dtype: object
1、访问序列
(1)可以通过索引访问序列,如:
from pandas import Series
s=Series(['张三','李四','王五'])
print(s)
print(s[0])
print(s[1:])
运行结果如下:
0 张三
1 李四
2 王五
dtype: object #print(s)输出
张三 #print(s[0])输出
1 李四
2 王五
dtype: object #print(s[1:])输出
(2)通过值获取索引值
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
print(s.index[s.values=='李四'])
运行结果:
Index(['B'], dtype='object')
(3)判断值是否存在
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
f='李四' in s.values
print(f)
运行结果:
True
(4)定位获取
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
print(s[[0,2,1]])
运行结果:
A 张三
C 王五
B 李四
dtype: object
2、修改序列
(1)追加序列,如:
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
s1=Series(['孙六'],index=['D'])
s=s.append(s1)
print(s)
运行结果:
A 张三
B 李四
C 王五
D 孙六
dtype: object
(2)修改序列的值
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s[1]='李飞'
print(s)
运行结果:
A 张三
B 李飞
C 王五
D 孙六
dtype: object
不知道索引,仅知道要修改的值,也可通过值查找到索引后,再修改序列的值。如:
s[s.index[s.values=='李四']]='李飞'
这样也可以将“李四”修改为“李飞。
(3)修改索引
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s.index=[0,1,2,3]
print(s)
运行结果:
0 张三
1 李四
2 王五
3 孙六
dtype: object
(4)删除元素
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s=s.drop('A')
print(s)
运行结果:
B 李四
C 王五
D 孙六
dtype: object
(5)重新排序
可以按照索引排序,使用sort_index(ascending=True)方法对index进行排序 *** 作。
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s=s.sort_index(ascending=False) # ascending=False表示按降序排列
print(s)
运行结果:
D 孙六
C 王五
B 李四
A 张三
dtype: object
(6)重置索引
重置索引可以使用reindex()。如果index列表中的元素多于序列的值,可用fill_value=0这样的语句填充。
s=s.reindex(['D','C','B','A'])
如果index列表中的元素多于序列的值,可用fill_value=0这样的语句填充。
s=s.reindex(['D','C','B','A'], fill_value=0)
19.2.2 DataFrame
DataFrame(数据框架)用于存储多行和多列的数据集合。它是Series的容器,类似于Excel中二维表格。
定义一个DataFrame的语法格式如下:
df=DataFrame({列名1 : 序列1,列名2 : 序列2,.......列名n : 序列n}, index=序列 )
例如,有如下二维表:
姓名
性别
年龄
张三
男
18
李四
女
19
王五
男
17
保存到DataFrame中可以用如下方法:
from pandas import Series
from pandas import DataFrame
name=Series(['张三','李四','王五'])
sex=Series(['男','女','男'])
age=Series([18,19,17])
df=DataFrame({'姓名':name,'性别':sex,'年龄':age})
print(df)
运行结果:
姓名 性别 年龄
0 张三 男 18
1 李四 女 19
2 王五 男 17
从上例可以看出,虽然我们省缺了索引,但系统自动添加了从0开始的索引值。
19.3 DataFrame的基本 *** 作
1、访问方式
(1)获取行
print(df[1:2]) # 获取第1行的值
输出结果:
姓名 性别 年龄
1 李四 女 19
print(df[1:3]) #获取第1行到第2行的值
输出结果:
姓名 性别 年龄
1 李四 女 19
2 王五 男 17
(2)获取列
print(df['姓名']) #获取“姓名”列的值
输出结果:
0 张三
1 李四
2 王五
Name: 姓名, dtype: object
另一种方法:
print(df[df.columns[0:1]]) #先按照索引号获取列名,再按照列名读取
输出结果和上面的方法完全一致。
还有一种情况,是获取唯一值,即将列内的重复值中多余的删除,仅留下互不相同的值。所用的到方法是unique()。
sex1=Series(df['性别'].unique())
print(sex1)
输出结果:
0 男
1 女
dtype: object
(3)获取指定位置的值
print(df.at[1,'姓名']) # 格式为变量名.at[行号,列名]
输出结果:
李四
(4)获取块的值
print(df.iloc[0:2,1:3]) # 格式为变量名.iloc[行号1:行号2, 列号1:列号2]
输出结果:
性别 年龄
0 男 18
1 女 19
print(df.iloc[:,1:2]) #获取“性别”列的值
运行结果:
性别
0 男
1 女
2 男
2、修改、删除、增加行和列
(1)修改列名
print(df.columns)
df.columns=['name','sex','age']
print(df.columns)
输出结果:
Index(['姓名', '性别', '年龄'], dtype='object')
Index(['name', 'sex', 'age'], dtype='object')
可见,列名已经由“姓名、性别、年龄”修改为“age、sex、age”了。但这种修改必须把全部列名都一一列举,不能有遗漏,否则就会出错。如:
df.columns=['name','sex']
此时会报错:ValueError: Length mismatch: Expected axis has 3 elements, new values have 2 elements。
(2)修改行索引
df.index=[1,2,3]
(3)删除行
df.drop(1,axis=0) # axis=0表示行轴,也可以省略
(4)删除列
df.drop(‘性别’,axis=1) # axis=0表示列轴
也可以使用另一种方法:
del df['性别']
(5)增加列
df['电话']=['1111111','2222222','3333333']
print(df)
运行结果:
姓名 性别 年龄 电话
0 张三 男 18 1111111
1 李四 女 19 2222222
2 王五 男 17 3333333
(6)增加行
df.loc[len(df)]=['孙六','男','20']
(7)追加
from pandas import Series
from pandas import DataFrame
name=Series(['张三','李四','王五'])
sex=Series(['男','女','男'])
age=Series([18,19,17])
df=DataFrame({'姓名':name,'性别':sex,'年龄':age}) # 建立DataFrame,变量名为df
name1=Series(['孙六','候七'])
sex1=Series(['男','女'])
age1=Series([19,17])
df1=DataFrame({'姓名':name1,'性别':sex1,'年龄':age1})
# 建立DataFrame,变量名为df1
df=df.append(df1,ignore_index=True)
# 将对df1追加到df后面,参数ignore_index=True表示重新索引
print(df)
运行结果:
姓名 性别 年龄
0 张三 男 18
1 李四 女 19
2 王五 男 17
3 孙六 男 19
4 候七 女 17
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)