我们在CASS绘图软件的安装目录找到SYSTEM目录。
2
/6
在SYSTEM目录下找到WORK.DEF文件。
3.使用记事本打开WORK.DEF文件,查找到一般房屋宏列。
4
/6
将“141101,JMD,6,continuous,0,一般房屋”改为“141101,JMD,8,continuous,土,一般房屋”并存盘。
5.重新启动CASS绘图软件(注意必须重新启动初始化后,才可以使用),我们使用一般房屋工具命令即可方便的绘制出土房,并且带“土”字注记。
首先还是分析思路,爬取网站数据,获取小区名称,地址,价格,经纬度,保存在excel里。再把excel数据上传到BDP网站,生成地图报表本次我使用的是scrapy框架,可能有点大材小用了,主要是刚学完用这个练练手,再写代码前我还是建议大家先分析网站,分析好数据,再去动手写代码,因为好的分析可以事半功倍,乌鲁木齐楼盘,2017乌鲁木齐新楼盘,乌鲁木齐楼盘信息 - 乌鲁木齐吉屋网 这个网站的数据比较全,每一页获取房产的LIST信息,并且翻页,点进去是详情页,获取房产的详细信息(包含名称,地址,房价,经纬度),再用pipelines保存item到excel里,最后在bdp生成地图报表,废话不多说上代码:
JiwuspiderSpider.py
# -*- coding: utf-8 -*-
from scrapy import Spider,Request
import re
from jiwu.items import JiwuItem
class JiwuspiderSpider(Spider):
name = "jiwuspider"
allowed_domains = ["wlmq.jiwu.com"]
start_urls = ['http://wlmq.jiwu.com/loupan']
def parse(self, response):
"""
解析每一页房屋的list
:param response:
:return:
"""
for url in response.xpath('//a[@class="index_scale"]/@href').extract():
yield Request(url,self.parse_html) # 取list集合中的url 调用详情解析方法
# 如果下一页属性还存在,则把下一页的url获取出来
nextpage = response.xpath('//a[@class="tg-rownum-next index-icon"]/@href').extract_first()
#判断是否为空
if nextpage:
yield Request(nextpage,self.parse) #回调自己继续解析
def parse_html(self,response):
"""
解析每一个房产信息的详情页面,生成item
:param response:
:return:
"""
pattern = re.compile('.*?lng = '(.*?)'.*?lat = '(.*?)'.*?bname = '(.*?)'.*?'
'address = '(.*?)'.*?price = '(.*?)'',re.S)
item = JiwuItem()
results = re.findall(pattern,response.text)
for result in results:
item['name'] = result[2]
item['address'] = result[3]
# 对价格判断只取数字,如果为空就设置为0
pricestr =result[4]
pattern2 = re.compile('(d+)')
s = re.findall(pattern2,pricestr)
if len(s) == 0:
item['price'] = 0
else:item['price'] = s[0]
item['lng'] = result[0]
item['lat'] = result[1]
yield item
item.py
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class JiwuItem(scrapy.Item):
# define the fields for your item here like:
name = scrapy.Field()
price =scrapy.Field()
address =scrapy.Field()
lng = scrapy.Field()
lat = scrapy.Field()
pass
pipelines.py 注意此处是吧mongodb的保存方法注释了,可以自选选择保存方式
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
from scrapy.conf import settings
from openpyxl import workbook
class JiwuPipeline(object):
wb = workbook.Workbook()
ws = wb.active
ws.append(['小区名称', '地址', '价格', '经度', '纬度'])
def __init__(self):
# 获取数据库连接信息
host = settings['MONGODB_URL']
port = settings['MONGODB_PORT']
dbname = settings['MONGODB_DBNAME']
client = pymongo.MongoClient(host=host, port=port)
# 定义数据库
db = client[dbname]
self.table = db[settings['MONGODB_TABLE']]
def process_item(self, item, spider):
jiwu = dict(item)
#self.table.insert(jiwu)
line = [item['name'], item['address'], str(item['price']), item['lng'], item['lat']]
self.ws.append(line)
self.wb.save('jiwu.xlsx')
return item
最后报表的数据
mongodb数据库
地图报表效果图:BDP分享仪表盘,分享可视化效果
https://me.bdp.cn/share/index.html?shareId=sdo_b697418ff7dc4f928bb25e3ac1d52348
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)