Hive外表批量添加分区

Hive外表批量添加分区,第1张

我们有一批日志数据存储在hdfs上,按天创建目录,如2018-07-31的日志hdfs路径为:/data/logs/gateway/20180731。

现在要用hive分析数据,同时要保证这些数据目录不能改变,就需要hive用外表的方式与这些数据进行关联。

示例:

但是,看下文件列表

一共108个待添加的目录,这样一个个添加太累人,有没有批量添加的方法呢?

Hive有个MSCK命令,可以扫描数据分区目录,修复元信息,目录与元信息不一致时,能自动更新。

但是,数据目录必须是Hive习惯路径格式:

同时,建表时指定LOCATION为分区目录的父目录:

这时,用命令

即可自动把所有的数据按dt分区,添加到gateway_analysis中。

由于我们的目录格式不符合,只能用ADD PARTITION的方式了。

为减少工作量,写了个shell脚本,自动添加 /data/logs/gateway 目录下所有的分区目录到gateway_analysis表中:

一、Hive only:加载分区数据的快捷方法

如果指定的分区不存在Hive将创建新的分区

这个命令将:

(1)如果不存在的话添加分区到表的元数据

(2)如果存在的话,创建子目录:/user/hive/warehouse/call_logs/call_date=2014-10-02

(3)移动HDFS文件call-20141002.log到分区子目录

二、查看、添加和移除分区

(1)查看当前表分区

(2)使用ALTER TABLE添加或删除分区

三、  从已存在的分区目录创建分区

(1)HDFS的分区目录可以在Hive或Impala之外进行创建和数据,比如:通过Spark或MapReduce应用

(2) Hive中使用MSCK REPAIR TABLE命令来为已存在的表创建分区

四、什么时候使用分区

下列情况使用分区

(1)读取整个数据集需要花费很长时间

(2)查询几乎只对分区字段进行过滤

(3)分区列有合理数量的不同的值

(4)数据生成或ETL过程是按文件或目录名来分段数据的

(5)分区列值不在数据本身

五、什么时候不使用分区

(1)避免把数据分区到很多小数据文件

– 不要对有太多惟一值的列进行分区

(2)注意:当使用动态分区时容易发生

– 比如:按照fname来分区客户表会产生上千个分区

六、  Hive进行分区

在旧的Hive版本中,动态分区默认没有启用 ,通过设置这两个属性启用:

但是在hive分区中我们应该注意一些问题,比如:

(1)注意:Beeline设置的Hive变量只在当前会话有效,系统管理员可以设置永久生效

(2)注意:如果分区列有很多唯一值,将会创建很多分区

另外,我们可以给Hive配置参数来限制分区数 :

(1) hive.exec.max.dynamic.partitions.pernode

查询在某个节点上可以创建的最大动态分区数,默认100

(2) hive.exec.max.dynamic.partitions

一个HiveQL语句可以创建的最大动态分区数 ,默认1000

(3)hive.exec.max.created.files

一个查询总共可以创建的最大动态分区数,默认1000000

hive 分区表

分区字段的物理表现:

hive分区表 ,其真实的表现其实就是在 存储hive表的文件夹的下面,创建新的文件夹,

文件夹的名字是 分区字段=字段取值 这种格式的。

分区的优点:

当分区表的数据很大的时候,可以指定查询表格之中的部分数据。

设置表格分区字段需要的注意点:

1:分区字段的取值不要很多,因为这样会造成表的文件夹的下面会出现很多的小的文件夹

2: 一般可以将sql之中 where 之中出现的字段作为 分区的字段。(可以当作分区字段选取的一个参考)

查看表格是否是分区表:

desc formatted table_name

分区表的话 ,会有Partition Information

向分区表插入数据:

情况分为:

1:向表格之中插入数据,明确指定插入的分区的名字

2:向表格之中插入数据,不明确指定插入的数据的名字,而是根据插入的数据的某个字段的取值来自动决定数据

被插入到哪一个分区之中。被称为动态分区。

如何开启hive 动态分区的功能?

set  hive.exec.dynamici.partition=true

hive 动态分区:有两种模式:

严格模式 和非严格模式

严格模式:

动态分区的时候,必须有一个分区是静态的。

非严格模式,对分区是否是静态的不在意。

如何设置 动态分区的模式?

set hive.exec.dynamic.partition.mode=nostrict

默认的模式是strict 严格模式。

插入数据时 明确指定需要插入的分区的值:

sql demo :

1:load data [local] inpath 'path' into table xxx partition(partition_fields partiton_type)

2:insert into table table_a partition(partition_fields partition_type)

select * from table_b [....]

使用insert 的时候 ,需要注意前后表的表的字段数目是匹配的,

如果表的前后字段是不匹配的话,那么就是会报错。

向分区表之中插入数据的时候,根据数据的某个字段的值,来创建分区,

以及决定数据被插入到哪一个分区之中。

sql demo:

对一个分区 进行动态分区:

首先要设置两个参数:

set  hive.exec.dynamici.partition=true

set hive.exec.dynamic.partition.mode=nostrict

然后就是可以使用动态分区了。

分区值的推断,是根据后面查询的最后字段来决定的,只有一个分区,

那么就是查询的最后一个字段,如果是两个,那么就是从后往前的字段进行匹配。

insert into table pp partition(`date`) select name,age,`date` from par

这里的sql demo 

是将par 的`date` 字段 作为pp表之中 `date`分区的取值。

部分动态分区:

就是多个分区,但是前面的分区的取值是取静态的,然后后面的分区的取值是未定的。

类似于 partition(country='china',city)

这里需要注意的是顺序,静态分区在前面,动态分区在后面。

然后就是多个分区,完全的动态分区:

完全动态分区的时候,就是使用后面select 查询的表进行分区数据的匹配。

动态分区在实际使用的时候会遇到的问题:

动态分区的一个使用场景:

首先加载数据到一个表格a之中,然后将这个表格之中再次转化到另外一个

表格b之中,表a转化到表b的时候,使用动态分区。

因为直接使用load 加载数据的时候,对于分区表而言,加载数据只能指定固定的分区名,

无法使用动态分区来加载数据。

相应的问题就是:

如果a表本身含有很多的文件,那么使用动态分区的时候,

那么在b表的时候,就是会产生很多的小文件。

原因如下:

如果 a表之中数据文件是200个,

那么动态分区的时候,可能会产生200个map,

然后一个map包含的数据之中,可能有多个分区的取值,

所以一个map 会产生多个文件。

所以后果就是,在新的b表之中的每个分区下面,会产生很多的小文件。

总结来说:不好的影响就是可能会产生很多的小文件。

解决的方式:

因为动态分区转化成为的mapredue job 是没有reduce,所以数目不好控制,

所以可以采用的方式,就是手动增加reduce的数目,

可以使用distributed by 来增加 reduce的数目。

insert into table table_a partition('partition_name')

select *  from table_b

dirtribute by partitoin_name

但是这样的方式,就是可能导致 reduce之间包含的数据量的不均匀。

所以解决的方法就是:

distribute by rand()

使用hash 随机分区,这样的方式,来讲数据均匀分配到reduce之中。

然后每个reduce 会产生 分区取值数目的文件,

例子: reduce数目为 200 分区的取值数位24

那么最后产生的文件的数目就是 200* 24个文件。

其实可以通过exlpain 来解析sql的执行计划,这样的话,

可以看出是否具有reduce *** 作。

查询表的分区信息:

show partitions table_name

向分区表之中增加分区:

alter table table_name add partition(pfield=pvalue,...)

如果表格之中有多个分区的话,那么增加分区的时候,也是多个分区

一同增加的。

删除分区:

alter table table_name drop partition(pfield=pval)

分区信息修改:

分区信息的修改分为 分区名的修改 和 分区数据的修改 两种

分区名的修改

alter table table_name partition(pfield=pvalue) rename to partition(pfield=pvalue)

分区数据的修改:

alter table table_name partition(pfield=pvalue) set location 'data_location'


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11719322.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存