\sup_{\substack{
\varphi \in C_0^\infty (\Omega)
\\
\| \varphi \|_{L^{p'}(\Omega)} \leqslant 1
}} \Bigg|
第二个公式:
\begin{alignat}{3}
\frac{\partial n}{\partial t}
&= D_{n} \frac{\partial}{\partial x} \Big( n^{2} \frac{\partial n}{\partial x} \Big)
&&- \chi \frac{\partial}{\partial x} \Big( n \frac{\partial v}{\partial x} \Big)
&&+ k_{1} n (1 - n - r)
\nonumber \\
&\phantom{{}={}} \mbox{random motility}
&&\phantom{{}-{}} \mbox{chemotaxis}
&&\phantom{{}+{}} \mbox{proliferation}
\end{alignat}
\xLongleftrightarrow[]{} 是长的等价于符号\xlongleftrightarrow[]{} 是短的等价于符号
类似的还有\xLongleftarrow[]{},\xLongrightarrow[]{},\xlongrightarrow[]{},\xlongleftarrow[]{}等
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)