pandas专门为处理表格和混杂数据设计
import pandas as pd
from pandas import Series,DataFrame
Series 类似于一维数组+索引
data = pd.Series([1,2,3,4,5]) 生成Series数据
data.values data.index
pd.Series([1,2],index = ['a','b']) 设置索引
data['a'] 通过索引选取Series中单个或一组值
data[data%2==0] 进行类似numpy数组的运算index仍会保留
'a' in data
pd.Series(python字典) 可以通过python字典创建Series
可以通过设置index改变Series元素顺序
缺失值用NaN表示
pd.isnull(data) 检测缺失数据
pd.notnull
data1 + data2 可以根据索引自动对齐数据进行运算,类似join *** 作
data.name data.index.name 可赋值
index可以通过赋值方式修改
pd.DataFrame(XXX)传入元素为等长列表或np数组组成的字典可以生成DataFrame数据,字典key值为列名
frame.head() 前五行
pd.DataFrame(XXX, columns = [xxx], index = [xxxxx]) 可能产生NaN
frame['a'] 取列名为a的一列数据 等价于 frame.a(此时a需要是合理的变量名) 可以以列表形式取多列数据 返回的Series序列索引与原DataFrame相同
frame.loc[0] 行选取
可以用一个Series/值对某列赋值,需要长度相等
对不存在的列赋值可创建新列
del frame[列名] 删除列
通过索引方式返回数据视图,修改此返回数据也会影响源数据,Series.copy()可以创建副本
嵌套字典传给DataFrame,外层字典的键作为列名,内层键作为行索引
frame.T 转置
frame.reindex(新索引列表) 根据新索引重排,若索引值当前不存在则NaN
列可以用columns关键字重新索引
obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
obj3.reindex(range(6), method='ffill') ffill实现前向值填充
reindex可以修改(行)索引和列。只传递一个序列时,会重新索引结果的行,列可以用columns关键字重新索引
Series索引
series(索引列表/数值范围切片) 选取对应元素
19.1安装Anaconda
Anaconda是Python的一个开源发行版本,它预装了丰富的第三方库,而且主要面向科学计算和数据分析,使用起来要比原版的Python更省时省力。
Anaconda官方下载网址为:https://www.continuum.io/downloads。下载和安装的方法很简单,若有问题可以在网上搜索相关内容学习解决。
安装Anaconda之后,就会发现在Anaconda目录下同时安装了Jupyter Notebook、Spyder等工具,我们接下来主要使用Spyder进行开发。关于Spyder的使用方法非常简单,大家也可以去网上搜索学习。
虽然Anaconda已经预装了很多常用的包,但有时我们也需要自己安装一些包。可以在开始菜单中选择“Anaconda Anaconda Prompt”命令,在命令行输入conda install ( 代表包名)即可安装,也可以输入pip install 。
19.2数据分析包Pandas
Pandas是Python的一个数据分析包,Anaconda安装时已经附带安装了Pandas包。
Pandas数据结构有三种:Series(一维数组)、DataFrame(二维数组)和Panel(三维数组),其中最常用的是前两种数据结构。
19.2.1 Series
Series(序列)用于存储一行或一列数据,以及与之相关的索引的集合。
语法格式如下:
Series([数据1,数据2,......], index=[索引1,索引2,......])
例:
from pandas import Series
s=Series(['张三','李四','王五'],index=[1,2,3])
print(s)
输出结果如下:
1 张三
2 李四
3 王五
dtype: object
上面建立序列时指定了索引,若不指定,则默认的索引值从0开始。如下:
s=Series(['张三','李四','王五'])
输出结果为:
0 张三
1 李四
2 王五
dtype: object
索引值也可以为字符串。如下:
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
print(s)
输出结果为:
A 张三
B 李四
C 王五
dtype: object
1、访问序列
(1)可以通过索引访问序列,如:
from pandas import Series
s=Series(['张三','李四','王五'])
print(s)
print(s[0])
print(s[1:])
运行结果如下:
0 张三
1 李四
2 王五
dtype: object #print(s)输出
张三 #print(s[0])输出
1 李四
2 王五
dtype: object #print(s[1:])输出
(2)通过值获取索引值
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
print(s.index[s.values=='李四'])
运行结果:
Index(['B'], dtype='object')
(3)判断值是否存在
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
f='李四' in s.values
print(f)
运行结果:
True
(4)定位获取
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
print(s[[0,2,1]])
运行结果:
A 张三
C 王五
B 李四
dtype: object
2、修改序列
(1)追加序列,如:
from pandas import Series
s=Series(['张三','李四','王五'],index=['A','B','C'])
s1=Series(['孙六'],index=['D'])
s=s.append(s1)
print(s)
运行结果:
A 张三
B 李四
C 王五
D 孙六
dtype: object
(2)修改序列的值
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s[1]='李飞'
print(s)
运行结果:
A 张三
B 李飞
C 王五
D 孙六
dtype: object
不知道索引,仅知道要修改的值,也可通过值查找到索引后,再修改序列的值。如:
s[s.index[s.values=='李四']]='李飞'
这样也可以将“李四”修改为“李飞。
(3)修改索引
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s.index=[0,1,2,3]
print(s)
运行结果:
0 张三
1 李四
2 王五
3 孙六
dtype: object
(4)删除元素
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s=s.drop('A')
print(s)
运行结果:
B 李四
C 王五
D 孙六
dtype: object
(5)重新排序
可以按照索引排序,使用sort_index(ascending=True)方法对index进行排序 *** 作。
from pandas import Series
s=Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
s=s.sort_index(ascending=False) # ascending=False表示按降序排列
print(s)
运行结果:
D 孙六
C 王五
B 李四
A 张三
dtype: object
(6)重置索引
重置索引可以使用reindex()。如果index列表中的元素多于序列的值,可用fill_value=0这样的语句填充。
s=s.reindex(['D','C','B','A'])
如果index列表中的元素多于序列的值,可用fill_value=0这样的语句填充。
s=s.reindex(['D','C','B','A'], fill_value=0)
19.2.2 DataFrame
DataFrame(数据框架)用于存储多行和多列的数据集合。它是Series的容器,类似于Excel中二维表格。
定义一个DataFrame的语法格式如下:
df=DataFrame({列名1 : 序列1,列名2 : 序列2,.......列名n : 序列n}, index=序列 )
例如,有如下二维表:
姓名
性别
年龄
张三
男
18
李四
女
19
王五
男
17
保存到DataFrame中可以用如下方法:
from pandas import Series
from pandas import DataFrame
name=Series(['张三','李四','王五'])
sex=Series(['男','女','男'])
age=Series([18,19,17])
df=DataFrame({'姓名':name,'性别':sex,'年龄':age})
print(df)
运行结果:
姓名 性别 年龄
0 张三 男 18
1 李四 女 19
2 王五 男 17
从上例可以看出,虽然我们省缺了索引,但系统自动添加了从0开始的索引值。
19.3 DataFrame的基本 *** 作
1、访问方式
(1)获取行
print(df[1:2]) # 获取第1行的值
输出结果:
姓名 性别 年龄
1 李四 女 19
print(df[1:3]) #获取第1行到第2行的值
输出结果:
姓名 性别 年龄
1 李四 女 19
2 王五 男 17
(2)获取列
print(df['姓名']) #获取“姓名”列的值
输出结果:
0 张三
1 李四
2 王五
Name: 姓名, dtype: object
另一种方法:
print(df[df.columns[0:1]]) #先按照索引号获取列名,再按照列名读取
输出结果和上面的方法完全一致。
还有一种情况,是获取唯一值,即将列内的重复值中多余的删除,仅留下互不相同的值。所用的到方法是unique()。
sex1=Series(df['性别'].unique())
print(sex1)
输出结果:
0 男
1 女
dtype: object
(3)获取指定位置的值
print(df.at[1,'姓名']) # 格式为变量名.at[行号,列名]
输出结果:
李四
(4)获取块的值
print(df.iloc[0:2,1:3]) # 格式为变量名.iloc[行号1:行号2, 列号1:列号2]
输出结果:
性别 年龄
0 男 18
1 女 19
print(df.iloc[:,1:2]) #获取“性别”列的值
运行结果:
性别
0 男
1 女
2 男
2、修改、删除、增加行和列
(1)修改列名
print(df.columns)
df.columns=['name','sex','age']
print(df.columns)
输出结果:
Index(['姓名', '性别', '年龄'], dtype='object')
Index(['name', 'sex', 'age'], dtype='object')
可见,列名已经由“姓名、性别、年龄”修改为“age、sex、age”了。但这种修改必须把全部列名都一一列举,不能有遗漏,否则就会出错。如:
df.columns=['name','sex']
此时会报错:ValueError: Length mismatch: Expected axis has 3 elements, new values have 2 elements。
(2)修改行索引
df.index=[1,2,3]
(3)删除行
df.drop(1,axis=0) # axis=0表示行轴,也可以省略
(4)删除列
df.drop(‘性别’,axis=1) # axis=0表示列轴
也可以使用另一种方法:
del df['性别']
(5)增加列
df['电话']=['1111111','2222222','3333333']
print(df)
运行结果:
姓名 性别 年龄 电话
0 张三 男 18 1111111
1 李四 女 19 2222222
2 王五 男 17 3333333
(6)增加行
df.loc[len(df)]=['孙六','男','20']
(7)追加
from pandas import Series
from pandas import DataFrame
name=Series(['张三','李四','王五'])
sex=Series(['男','女','男'])
age=Series([18,19,17])
df=DataFrame({'姓名':name,'性别':sex,'年龄':age}) # 建立DataFrame,变量名为df
name1=Series(['孙六','候七'])
sex1=Series(['男','女'])
age1=Series([19,17])
df1=DataFrame({'姓名':name1,'性别':sex1,'年龄':age1})
# 建立DataFrame,变量名为df1
df=df.append(df1,ignore_index=True)
# 将对df1追加到df后面,参数ignore_index=True表示重新索引
print(df)
运行结果:
姓名 性别 年龄
0 张三 男 18
1 李四 女 19
2 王五 男 17
3 孙六 男 19
4 候七 女 17
可以对列进行运算,使用apply方法即可。
具体分析如下:
前提:加载numpy,pandas和Series,DataFrame,生成一个3乘3的DataFrame,命名为frame,用frame的第二列生成Series,命名为series1。
加法运算,frame.add(series1,axis=0)。减法运算:sub分别尝试不填充和填充,对比效果。
乘法运算,frame.mul(series1,axis=0),除法运算,frame.div(series1,axis=0)。
这里的Series是DataFrame的一列生成的,所以不会出现找不到索引的情况;若找不到索引则生成并集,缺失值则表示为NAN,四则运算的括号中有个参数axis=0表示按行索引匹配并且在列上进行广播。
拓展:Python是目前最流行最简单用途最广泛的编程语言,大数据时代最应该学习的一门编程语言。其中,数据分析的库pandas是Python最经典的库之一。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)