锂电池如何加大容量?

锂电池如何加大容量?,第1张

两颗电池串联和并联后,对比之前“相同”的输出功率下,容量都提高了1倍。但是串联会提高电压,如果没有控制器限制的话输出功率也会随着电压增加一倍,所以使用时间没有增加,但不代表总容量不变。结论就是:不限制输出功率的情况下,2颗电池串联功率增加1倍,时间不变。2颗电池并联功率不变,时间增加1倍。

提高对锂电池容量有贡献的材料的性能:这里主要就是对正负极活性物质而言,是提高容量密度最为直接的方法。主要的方向包括:

1、使用发挥更大的材料:例如正极的富锂材料、高电压三元材料、高电压钴酸锂材料、二元材料等负极的软碳硬碳、硅锡基化合物等。

2、使用压实密度更大的正负极材料。

3、使用粘结性、导电性更好的活性物质:这样可以减少粘结剂、导电剂在敷料中的含量,从而提高单位质量敷料所能发挥的容量另外粘结剂、导电剂的用量减少也可以提高材料活性物质的压实等加工性能。

4、使用厚度反d更小的材料:锂离子电池循环后,厚度会有一定的反d设计时需要预留循环后的反d厚度而当使用了厚度反d更小的材料时,则可以将省掉的厚度反d预留空间转给电芯的设计厚度,从而增加电芯的设计容量。

5、选择搭配性能更优的材料体系:匹配性不好的材料组合在一起,不仅会降低锂电池的循环性能,也可能影响到倍率性能甚至正负极的克发挥同理,当材料匹配性更好时,克发挥、循环、膨胀率等性能或许都可以得到改善。

最典型也最常见的方法如下:

①增加极板数量。

把原设计的单格5片6片制改为6片7片制,7片8片制,甚至8片9片制。靠减薄极板厚度和隔板,增加极板数量来提高电池容量。(这方法是不错但是成本就增加了);

②提高电池的硫酸比重。

原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36~1.38左右,这样可以提供较大的电流,提升电池的初期容量。

③增加正极板活性物质氧化铅的用量和比例。

增加氧化铅就增加了参与放电的电化学反应物质,也就增加了放电时间,增加了电池容量。

通过这些措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性。但是,极板增加了,硫酸的容量就减少了,电池发热导致大量失水,同时,电池的微短路和铅枝搭桥的概率增加了。提高硫酸比重增加了电池的初期容量,但是,硫化现象就更严重。密封电池的最基本原理之一就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”。这样,电池的失水很少,实现了“免维护”,就是免加水。为此,都要求负极板容量做的比正极板容量大一些,又称为负极过渡。增加正极板活性物质必然使得,负极过渡减少了,氧循环变差了,失水增加了,又会造成硫化。这些措施虽然提升了电池的初期容量,但是却会造成失水和硫化,而失水和硫化又会相互促成,最终结果却是牺牲电池的寿命。(这样就需要一月或者两月就要加次水,更加了维护的次数才能避免失水和硫化)

④还有就是极群组装虚焊问题。

容易产生虚焊的地方是极板。而每个电池的单格有15片极板, 就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个12V电池组成,就有270个焊点。如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,造成整个电池都落后,电池就会形成严重的不均衡,使这组电池提前失效。就算虚焊控制在万分之一,平均每37组电池就会有一组电池存在虚焊,这是绝对不能够允许的。而铅钙合金板栅的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿采用低锑合金的板栅而没有采用铅钙合金。而低锑合金的板栅析氧析氢电压更低,电池出气量大,失水相对严重,电池更容易硫化。(大火无虚焊,这种就对蓄电池生产的技术工人的技术要求更精湛,更熟练)

你好对于蓄电池来说,容量是一个永恒的话题,一些蓄电池制造商,就在蓄电池容量方面下足了功夫。更是八仙过海,真是各显神通啊。但是大家都听过一句话叫“鱼和熊掌,不能兼得”虽然蓄电池的容量增加了,但是有很多蓄电池却是寿命下来了,针对电动自行车用铅酸蓄电池的特殊性,各个电池制造商采取了多种方法。最典型也最常见的方法如下: ①增加极板数量。 把原设计的单格5片6片制改为6片7片制,7片8片制,甚至8片9片制。靠减薄极板厚度和隔板,增加极板数量来提高电池容量。(这方法是不错但是成本就增加了); ②提高电池的硫酸比重。 原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36~1.38左右,这样可以提供较大的电流,提升电池的初期容量。 ③增加正极板活性物质氧化铅的用量和比例。 增加氧化铅就增加了参与放电的电化学反应物质,也就增加了放电时间,增加了电池容量。 通过这些措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性。但是,极板增加了,硫酸的容量就减少了,电池发热导致大量失水,同时,电池的微短路和铅枝搭桥的概率增加了。提高硫酸比重增加了电池的初期容量,但是,硫化现象就更严重。密封电池的最基本原理之一就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”。这样,电池的失水很少,实现了“免维护”,就是免加水。为此,都要求负极板容量做的比正极板容量大一些,又称为负极过渡。增加正极板活性物质必然使得,负极过渡减少了,氧循环变差了,失水增加了,又会造成硫化。这些措施虽然提升了电池的初期容量,但是却会造成失水和硫化,而失水和硫化又会相互促成,最终结果却是牺牲电池的寿命。(这样就需要一月或者两月就要加次水,更加了维护的次数才能避免失水和硫化) ④还有就是极群组装虚焊问题。容易产生虚焊的地方是极板。而每个电池的单格有15片极板,就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个12V电池组成,就有270个焊点。如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,造成整个电池都落后,电池就会形成严重的不均衡,使这组电池提前失效。就算虚焊控制在万分之一,平均每37组电池就会有一组电池存在虚焊,这是绝对不能够允许的。而铅钙合金板栅的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿采用低锑合金的板栅而没有采用铅钙合金。而低锑合金的板栅析氧析氢电压更低,电池出气量大,失水相对严重,电池更容易硫化。(大火无虚焊,这种就对蓄电池生产的技术工人的技术要求更精湛,更熟练)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11781104.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存