矩阵求逆是一个病态问题,即矩阵并不是在所有情况下都有逆矩阵。所以上述式子在实际使用时会遇到问题。
可以用SGD(梯度下降法)求一个近似解,或者加入正则项(2范数)。加入正则项是我们这里要说的。加入2范数的正则项可以解决这个病态问题,并且也可以得到闭式解,在实际使用时要比用SGD快,并且加入正则化后的好处并不仅仅是这些。加入正则项(2范数)的loss如下:
其闭式解为:
此式在 \lambda 不为零时,总是有解的,所以是一个非病态的问题,这在实际使用时很好。除了这一点,2范数的正则项还有其他好处,比如控制方差和偏差的关系,得到一个好的拟合,这里就不赘述了,毕竟这里讲的是范数,有兴趣可以参阅相关资料。
逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。
一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:
伴随矩阵法解题过程
注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。
二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。
本人手写笔记
三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。
题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。
求矩阵的逆常用的有如下三种做法。经济数学团队帮你解答,请及时采纳。谢谢!一、公式法:A的逆阵=(1/|A|)A*,其中A*是A的伴随阵。
二、初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。
三、猜测法:如果能通过已知条件得出AB=E或BA=E,则B就是A的逆矩阵。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)