hostPath 类型的volume是映射Pod所在的节点的文件或者目录到 pod 里。在使用 hostPath 类型的存储卷时,也可以设置 type 字段,支持的类型有文件、目录、File、Socket、CharDevice 和 BlockDevice。
根据附录1的volume-pod.yaml创建一个pod,使用hostPath类型的volume
部署后查看pods详情, 发现volume-pod位于w2节点,登录到w2 尝试在pods的容器中创建文件
因为hostPath类型的volume只映射pod所在的节点的文件或目录到pod中,如果pod因为重启被调度到其他节点时,将会看不到原来节点保存的数据,因此有了网络存储+pv+pvc的方式。
通过PersistentVolume(PV)与PersistentVolumeClaim(PVC)将提供存储与消费存储分离:
2.PVC由用户创建来消费存储,如同通过创建pod来消费cpu、mem资源。
PVC与PV是通过PersistentVolume Controller 进行绑定的。PV Controller 会不断地循环去查看每一个 PVC,是不是已经处于 Bound(已绑定)状态。如果不是,那它就会遍历所有的、可用的 PV,并尝试将其与未绑定的 PVC 进行绑定,这样,Kubernetes 就可以保证用户提交的每一个 PVC,只要有合适的 PV 出现,它就能够很快进入绑定状态。而所谓将PV 与 PVC 进行“绑定”,其实就是将这个 PV 对象的名字,填在了 PVC 对象的 spec.volumeName 字段上 。
这里以NFS+PV+PVC为例进行说明, NFS搭建过程请参考附录2,根据考附录3 nginx-pv-pvc.yaml ,创建nginx(deployment)、nginx-pv(pv)、nginx-pvc(pvc)。nginx-pv挂载在/nfs/data/nginx 下。在/nfs/data/nginx下创建文件1.html,pod中也可以访问,并且pod的重新创建不影响1.html。
上节说的PV和PVC方法虽然能实现屏蔽底层存储,但是PV创建比较复杂,通常都是由集群管理员管理,这非常不方便。
利用StorageClass实现,可以根据PVC需求,自动构建相对应的PV持久化存储卷,进一步简化运维管理成本。
StorageClass对象会定义下面两部分内容:
示例部分参考 nfs-subdir-external-provisioner 。 相关文件来源于 deploy ,需要略作修改。
1. Volumes
2.《kubernetes权威指南》
3. Kubernetes 存储设计
NFS(Network File System)网络文件系统,是FreeBSD支持的文件系统中的一种,允许网络中的计算机之间通过TCP/IP网络共享资源。
由于容器本身是非持久化的,因此需要解决在容器中运行应用程序遇到的一些问题。首先,当容器崩溃时,kubelet将重新启动容器,但是写入容器的文件将会丢失,容器将会以镜像的初始状态重新开始;第二,在通过一个Pod中一起运行的容器,通常需要共享容器之间一些文件。Kubernetes通过卷解决上述的两个问题。
在Docker有卷的概念卷,但Docker中存储卷只是磁盘的或另一个容器中的目录,并没有对其生命周期进行管理。Kubernetes的存储卷有自己的生命周期,它的生命周期与使用的它Pod生命周期一致。因此,相比于在Pod中运行的容器来说,存储卷的存在时间会比的其中的任何容器都长,并且在容器重新启动时会保留数据。当然,当Pod停止存在时,存储卷也将不再存在。在Kubernetes支持多种类型的卷,而Pod可以同时使用各种类型和任意数量的存储卷。在Pod中通过指定下面的字段来使用存储卷:
PV是系统管理员设置的存储,它是群集的一部分,是一种资源,所以它有独立于Pod的生命周期。
PVC是用户存储的请求。它与Pod相似,Pod消耗节点的CPU和内存资源,PVC则消耗PV资源,可以生命特定的容量大小和访问模式。
PV和PVC遵循如下的生命周期管理
PV有两种配置方式:静态或动态
要启用基于存储级别的动态存储配置,集群管理员需要启用 API server 上的 DefaultStorageClass 准入控制器 。例如,通过确保 DefaultStorageClass 位于 API server 组件的 --admission-control 标志,使用逗号分隔的有序值列表中,可以完成此 *** 作。有关 API server 命令行标志的更多信息,请检查 kube-apiserver 文档。
一旦用户创建或已经创建了具有特定存储量的 PersistentVolumeClaim 以及某些访问模式。Kubernetes控制器会监视到新的 PVC,并寻找匹配的 PV,并将它们绑定在一起。如果为新的 PVC 动态调配 PV,则控制器会始终将该 PV 绑定到 PVC。总之,用户总会得到他们所请求的存储,但是容量可能超出请求的数量。一旦 PV 和 PVC 绑定后,PersistentVolumeClaim 绑定是排他性的,不管它们是如何绑定的。 PVC 跟 PV 绑定是一对一的映射。
如果没有匹配的PV,PVC将无限期地保持未绑定状态。随着匹配PV的可用,PVC将被绑定。例如,配置了许多 50Gi PV的集群将不会匹配请求 100Gi 的PVC。将100Gi PV 添加到群集时,则可以绑定到该 PVC。
Pod 使用PVC作为卷。集群检查PVC以查找绑定的卷并为集群挂载该卷。对于支持多种访问模式的卷,用户指定在使用声明作为容器中的卷时所需的模式(读写、只读)。
用户生命了PVC,并且该PVC是绑定的,则只要用户需要,绑定的 PV 就属于该用户。用户通过在 Pod 的 volume 配置中包含persistentVolumeClaim来调度 Pod 并访问用户声明的 PV。
K8S支持的卷类型很多,主要分为分布式文件系统、ConfigMap和本地文件系统这几种,其中本地文件系统支持:hostPath和local(从1.11开始出了Beta版本,编写本文时目前K8S最新版本是1.13了)。
在我们目前项目的实际开发中,我们常用两种卷挂载模式:
但是对于使用到本地磁盘来存储数据时,hostPath往往不太适合我们了,虽然它能够让Pod使用本地存储,将Node文件系统中的文件或者目录挂载到容器内,但是在这种应用场景,hostPath并不适合生产环境使用,主要原因如下:
当然hostPath还有其他的缺点,由于以上这两个关键的缺陷,在真正需要持久化数据存储的场景,我们不得不考虑local存储卷了。
Local PV是从kuberntes 1.10开始引入,本质目的是为了解决hostPath的缺陷。通过PV控制器与Scheduler的结合,会对local PV做针对性的逻辑处理,从而,让Pod在多次调度时,能够调度到同一个Node上。
首先,我们要准备好K8S环境,检查一下K8S中的节点。
现在登录到节点10.25.68.239上,然后手工创建一个目录,我们将后在后面创建的local PV绑定到这个目录中。
创建local的Storage Class
查看一下创建的storage class
创建PV:
查看一下pv情况
创建PVC
PVC将会一直处于Pending状态直到我们创建一个Pod使用它。
创建一个deployment使用这个pvc。
pvc现在绑定到对应的pv上面了。
查看pod被调度的节点,可以看到这个pod是会被调度到PV所在的Node:
我们再次登录到10.25.68.239,在/data/pv下生成index.html文件
检查一下index.html文件的服务
Local持久卷基本具备了hostPath的绑定本地文件系统目录的能力和方便性,同时自动具备调度到指定节点的能力,并且可以对持久卷进行管理。
唯一的问题在于,我们还需要手工去对应的节点创建对应的目录和删除对应的目录,这需要结合我们的应用系统来进行统一的设计和管理。
总得来说,对于状态应用程序的部署来说,Local持久卷能够提供分布式存储无法提供的高性能,同时具备了一定的调度的灵活性,是一个不错的选择。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)