箱盒图(也称盒图,箱线图等)是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据。通过箱盒图,可以直观的探索数据特征。
箱盒图共有两个用途,分别如下:
直观地识别数据中异常值(离群点);
直观地判断数据离散分布情况,了解数据分布状态。
箱盒图共由五个数值点构成,分别是最小观察值(下边缘),25%分位数(Q1),中位数,75%分位数(Q3),最大观察值(上边缘)。
中横线:中位数
IQR:75%分位数(Q3)-25%分位数(Q1)
最小观察值(下边缘) = Q1 – 1.5 IQR
最大观察值 (上边缘)= Q3 + 1.5 IQR
箱盒图的使用场景情况如下:
查看可能的异常值数据情况(比如在回归分析前查看是否有异常数据);
非参数检验时查看不同类别X时,Y的数据分布情况;
其它涉及查看数据分布或者异常值查看时。
SPSSAU *** 作截图如下:
上图中直观展示出C2时共有2个异常值点,如果对C2进行分析,且分析方法对异常值敏感时(比如相关分析,回归分析等),此时需要对该2个异常值点进行处理成null或者填充,或者在分析时进行过滤。
SPSSAU提供不同类别X时,Y的盒状图分布,比如上图中可以查看不同性别人群,C1,C2和C3共三项在区分性别时的盒状分布。
得到结果比如C1的盒状图如下:
上图可以看出,在男性时,C1中有2个异常点;女性时,C1共出现1个异常点。移动到异常点时会显示具体数据。此时如果有需要,可将此3个异常值进行处理,或者在分析时过滤掉异常值。
除了异常值的观察,还可以通过数据盒状图直观看出,男性在C1上的整体打分,会明显高于女性打分。
箱形图绘制介绍如下:
1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。
2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1和Q3)。在矩形盒内部中位数(Xm)位置画一条线段为中位线。
3、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在Q3+3IQR和Q1-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。四分位距=Q3-Q1。
4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。
5、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱形图便绘出了。统计软件绘制的箱形图一般没有标出内限和外限。
工具/原料:戴尔xps15、Win10、OfficePPT2016
方法:
1、打开PPT2016办公软件。
2、点击菜单栏中的插入。
3、点击图表。
4、点击箱形图,点击箱形图,点击确定。
5、插入箱形图图表成功。
6、点击加号,添加图标元素。
7、点击毛刷,添加样式和颜色。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)