spss modeler是一款由ibm官方发布的统计分析与数据挖掘工具,它采用了商业技术快速建立预测性模型,并将其应用与商业活动,从而改进决策过程。本平台提供SPSS Modeler 18破解白金版安装教程,内附破解文件和官方手册,感兴趣的朋友可以参考下!
新版IBM SPSS Modeler 18.0发布了,在这次新版本的更新中,带来了大量实用功能,内置性能更加强大的大数据算法,支持的平台更加广泛(包括Windows10)。除此之外,SPSS Modeler 18.0在开源技术上更多的扩展和更强大的支持,这些新的扩展空能包括了天气数据获取、GIS集成、地理空间应用等等,具体的数量已经从老版24个功能到现在的35个功能。
IBM SPSS Modeler 18.0 Premium 中文永久特别版(附安装教程+破解文件)
- 类型:辅助设计
- 大小:1.91GB
- 语言:简体中文
- 时间:2020-09-07
SPSS Modeler 18.0安装破解教程:
1、下载安装包,首先打开“1 SPSS_Modeler_18(bit64)”目录,运行“setup.exe”完成安装,中文界面,根据提示一路确认即可,完成后不用启动。
2、然后继续安装PSS Modeler 18premium版,打开“2 SPSS_Modeler_18_Premium(bit64)”目录,根据提示一路确认即可,完成后不用启动。
3、安装完成后,打开“”目录,将破解文件“”复制到安装目录Bin文件夹下,默认安装为C:\Program Files\IBM\SPSS\Modeler\18.0\bin
4、至此,SPSS Modeler 18.0破解版安装完成,大家快去体验吧
SPSS Modeler 18.0新功能:
1、支持的平台更加广泛(MAC / Windows 10)
相比于Modeler的兄弟产品,SPSS Statistics早在3年前的 21.0 版本已经开始支持 Mac *** 作系统,而Modeler一直只能支持Windows *** 作系统,可谓愁死了广大的果粉了。很多果粉小伙伴为了能够在Mac上用上Modeler可谓是费苦心啊。
但是现在,Modeler的18.0版本也正式发布了Mac版本,从此与虚拟机“Say Byebye”,咱们终于也能够在Mac上直接使用了。
2、性能/功能更加强大的大数据算法
2.1 所有算法都支持本地运行而不需要连接Analytics Server
在Modeler之前的版本中,为更好满足客户的需求,特意设计了部分支持分布式计算的算法,而这些算法的实现是需要Analytics Server(简称AS,大家可以把AS理解为SPSS Modeler与Hadoop的连接器)这一模块才能运行的,而现在这些新的算法都支持在本地client端运行。这些新算法包括:
2.2 所有新算法都支持基于内存的分布式计算
毫无疑问,对于大规模数据集来说,使用多线程计算将能更好地利用我们的硬件资源,更重要的是能够节省我们的建模时间。在旧版本的SPSS Modeler版本中,只有部分的算法(CHAID,C&RT树,QUEST,线性模型,神经网络)能够支持多线程,并且只有在连接上Modeler Server中的时候,才能启用这项功能。
而在刚刚 2.1 提到的所有算法当中,现在都能支持多线程计算,并且直接在Modeler client端中即可启用多线程,而无需连接至服务器端。
2.3 算法优化
(1) 线性SVM以及广义线性模型(AS算法)提供了正则化功能
我们知道过拟合是我们机器学习过程中常常面临的问题,为了避免模型过于复杂带来的问题,我们可以通过正则化对模型添加先验,使得模型的复杂度得到控制,从而减少噪声的扰动。因此在Modeler的18版本中,GLE以及LSVM都提供了正则化的功能:
(2) 树模型和LSVM模型提供了专门的数据准备功能
为了增强Tree-AS以及LSVM的能力,在Modeler的18版本当中,特意结合了数据准备功能在这两个节点中,具体能力包括:连续字段分箱处理,分类字段进行类别合并,时间戳进行字段转换,把缺失值自动视为新的类别(Tree-AS)等等
(3) 随机树节点新增功能选项
随机树节点,大家可以理解为随机森林,但因为随机森林最早被Leo Breiman和Adele Cutler提出后,就被注册成了商标,因此这里称之为随机树模型。该模型新增了两个功能选项:
(a) 指定要用于拆分的最小预测变量数:如果是构建拆分模型,请设置要用于构建每个拆分的最小预测变量数。这防止拆分创建过小的子组。
(b) 当准确性无法再提高时停止构建 要:改进模型构建时间,请选择此选项,以在结果的准确性无法提高时停止模型构建过程。
(4)时间序列算法的增强
时间序列算法主要增强在两方面,一个是支持了多线程计算,二是增加了同时计算多个时间序列模型功能。
例如在旧版本中,当我们的原始数据是6个销售门店从2015年1月到2016年6月的销售额,那么我们只能通过编程或分别使用多个时间序列节点才能完成对6个销售门店时间序列的预测,但是在新版本中,我们则可以一次性构建多个模型,大大简化了建模的步骤。
3、在开源技术上更多的扩展和更强大的支持
3.1 在开源工具上更好的扩展和支持
机器学习是一个充满生命力的技术领域,开源技术每天都会有长足的进步,为了能够保证能够在SPSS Modeler平台上使用到新的数据技术,Modeler在开源技术上一直有很好的支持。
从15版本开始集成R语言,16版本开始集成Python,17版本集成Spark。而来到我们的18版本,SPSS Modeler在集成上再更进一步,以往在集成Python以及Spark上需要AS组件的支持,但是现在我们能够直接在Modeler的客户端上直接集成Python的能力,并且我们能够把相关的R语言代码/Python代码直接集成成为一个建模节点。
3.2 全新的扩展中心
除了通过上述的方法,通过在Modeler中嵌入相关的R/Python代码定制相关节点外,IBM也开发了更多的功能在Github上,而现在我们可以直接在Modeler上下载应用相关的功能节点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)