牛顿莱布尼茨公式

牛顿莱布尼茨公式,第1张

牛顿莱布尼茨公式 牛顿-莱布尼茨公式怎么证明?

证明过程如下:

设F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)

当Δx很小时:

F(x1)-F(x0)=F’(x1)*Δx

F(x2)-F(x1)=F’(x2)*Δx

……

F(xn)-F(x(n-1))=F’(xn)*Δx

所以:

F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx

当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)

扩展资料:

牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,平面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。

牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运动物体的路程,计算变力沿直线所做的功以及物体之间的万有引力。

牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式在微分方程,傅里叶变换,概率论,复变函数等数学分支中都有体现。

参考资料来源:百度百科-牛顿-莱布尼茨公式

已赞过已踩过<你对这个回答的评价是?评论收起百度网友db79d442018-10-14·超过13用户采纳过TA的回答知道答主回答量:69采纳率:42%帮助的人:3.7万我也去答题访问个人页关注展开全部可能之前的几位看得不是很懂。我上学的时候写过关于这个公式的论证方法ppt,上课轮流发表的,所以印象非常深刻。虽然这只是一个公式,死记硬背却并非那么好的一个办法。透过这个公式看本质,才是最主要的嘛。^(>-<)^从根源开始挖掘。先简单地提几个基础定义。求导是什么?求导就是求一个函数曲线的斜率随x变化而变化的函数。函数F求导之后变成函数G, 则G 为F 的导函数, F 为G 的原函数。求导是已知F求G 。如果只知道G,怎么求F?也就是说,是哪个函数求导之后变成了G?那么这个求F 的过程就是求导的逆运算,也就是积分。怎么通过导函数求得原来的函数呢?需要算出该曲线到x轴的面积与x的关系式。则以【面积-x】作为变量的函数就是求导之前的那个函数。一个函数的导函数是其斜率和x的函数,则原函数是其到x轴面积与x的函数。废话不再多说,上公式。没法传图,那么就请用你那强大的想象能力。。。求函数的定积分,就是在一条曲线上取一个范围,在这个范围内函数到x轴的面积,是常数。不定积分则是求这个函数的原函数,即“面积与x的关系”,是一个函数。都是面积。不定积分把面积视作变量,而定积分就是计算一个面积数值。无论是原函数F(x)还是导函数f(x),折腾来折腾去x永远不变。那么就假设函数曲线有俩垂直线段接触x轴。(不如在纸上画图试试?)设:该曲线的区间为[0,b]中间围着的这块面积就是函数在这个区间的定积分。假定有一链接函数与x轴的垂直线段可左右移动。因为该曲线到y轴就没了,所以线段与y重合时,面积为0.移到b处,面积自然而然就是F(b),也就是之前所说的 面积和x关系的函数F(x)。而正好这个函数也只能到b,所以F(b)就是这个函数到x的面积。如果将图象略微右移,那么函数的左区间就变成了a。那么要稍微画一条辅助线了。你可以延长该曲线然后使其交于x轴于c,也可以在a左边做一条和a,b一样的线段c。只是思想实验,本质上是一样的。这个时候F(b)就是从c到b的面积了,而a与c形成的面积,是不是F(a)!所以a与b之间的面积就是F(b)-F(a).公式就这么来的。如果能看得透一点,那么这个公式的本质其实就是:y=f(x). 如果有x1,x2则有 y(增量)=f(x2)-f(x1)。只不过这个公式是针对基础算法的,牛莱公式是针对微积分这个高等算法的。已赞过已踩过<你对这个回答的评价是?评论收起 ._4m59a3r{padding:30px 0 20px 42px;border:0;background-color:#fff;position:relative;zoom:1;margin-bottom:10px}._4m59a3r.ec-1841{padding:20px 0}._4m59a3r.ec-2246{padding:20px 0 10px}.ec-1841 ._44pkrw8{font-size:16px;margin-bottom:-5px}._44pkrw8{position:relative;overflow:hidden;line-height:25px;height:25px;color:#7a8f9a}._44pkrw8 h2{margin:0;padding:0}._44pkrw8:after{content:" ";display:block;height:0;clear:both;visibility:hidden}a._53wjrpp{float:right;color:#666;text-decoration:none;font-size:12px;margin-left:8px}._3sjgky6{font-size:13px;line-height:normal;color:#666;line-height:20px;margin-top:10px}._5qv9qjj{position:relative;margin-top:15px}._5qv9qjj h3{padding:0;font-weight:400}._5qv9qjj a{text-decoration:none}._5qv9qjj em{color:#d81419;font-style:normal}.ec-2246 ._5qv9qjj{margin-top:20px}._2md3yaj{margin-top:10px}._8tzhv8k{margin-top:24px}._2n9tg5c{display:block;width:auto;overflow:hidden}._2pgsygz,._3e8y5sz,._3qq8arb,._3snc425,._4r71dp9,._6hxazj8,._7n8mzey,._7wu6jbr,._25ypd8e,._58qg8g6,._78q33t7{position:relative;min-height:1px;float:left;box-sizing:border-box}._6hxazj8{width:8.33333333%}._78q33t7{width:16.6666666%}._4r71dp9{width:25%}._25ypd8e{width:33.33333333%}._58qg8g6{width:50%}._3snc425{width:58.3333333%}._7wu6jbr{width:66.66666667%}._3qq8arb{width:75%}._3e8y5sz{width:83.3333333%}._7n8mzey{width:91.66666667%}._2pgsygz{width:100%}._4xt2t91{float:right}body a._8r3sgmj,body div._8r3sgmj{font-family:Arial,Helvetica,sans-serif;text-decoration:none;color:#333;font-size:14px!important;line-height:19px;margin-bottom:10px;display:block}a._8r3sgmj:hover{color:#34b458;text-decoration:underline}a._8r3sgmj font{color:#34b458}a._8r3sgmj div{word-break:break-all}._2vp72m4{white-space:nowrap;text-overflow:ellipsis;overflow:hidden}._37n8ad5{-webkit-line-clamp:2}._5waejsg,._37n8ad5{display:-webkit-box;word-break:break-all;word-wrap:break-word;-webkit-box-orient:vertical;overflow:hidden}._5waejsg{-webkit-line-clamp:3}._2htasef{display:-webkit-box;-webkit-line-clamp:4;word-break:break-all;word-wrap:break-word;-webkit-box-orient:vertical;overflow:hidden}body .ds4ghcq{font-family:Arial,Helvetica,sans-serif;font-size:12px;line-height:22px;transform:translateY(.4666666667em);padding-top:0;color:#7a8f9a;position:relative}body .ds4ghcq:before{content:"";margin-top:-10px;display:block;height:0}body .ds4ghcq a{color:#7a8f9a;display:block}body .ds4ghcq a ._36v43n5{color:#666}body .ds4ghcq button{float:right;color:#38f;font-size:12px;background:#fff;border:1px solid;padding:7px 13px;border-radius:3px;line-height:12px;position:absolute;right:0;bottom:0}body .ds4ghcq ._2n4a8n5{margin-left:5px}body .ds4ghcq ._5pyvpnv{display:inline-block;width:22px;height:22px;line-height:0;vertical-align:middle;margin-right:7px;margin-top:-2px;border:1px solid #eee;border-radius:50%}._86c1h4n{position:absolute;right:0}.ds4ghcq .ec-showurl-line:hover{text-decoration:underline}.ds4ghcq .ec-showurl-line{color:#9eacb6}body .tqf6eu9{font-size:12px;line-height:22px;transform:translateY(.4166666667em);padding-top:0}body .tqf6eu9:before{content:"";margin-top:-10px;display:block;height:0}body .tqf6eu9 a,body .tqf6eu9 div{color:#333}body .tqf6eu9 ._5cts8sp{font-size:15px;color:#999;line-height:25px}body .tqf6eu9 ._7rt4vyd{margin-right:5px}.tqf6eu9 font{color:#34b458}.ec-2246 .tqf6eu9 font{color:#c60a00}.ec-2246 .tqf6eu9{font-size:16px}.ec-2246 ._2cp3m46{position:relative}.ec-2246 ._2cp3m46:after{position:absolute;bottom:0;right:0;display:inline-block;padding-left:10px;padding-right:0;content:"70B951FB67E5770B8BE660C5";color:#34b458;background-color:#fff}.ec-2246 ._2cp3m46:before{position:absolute;bottom:0;right:90px;width:47px;height:29px;content:"";background-image:linear-gradient(270deg,#fff,hsla(0,0%,100%,0))}._4gepg6u{padding-bottom:100%}._3624yur{padding-bottom:133.33333333%}._2h49h5v{padding-bottom:33.3333333333%}._34vx49v{padding-bottom:56.25%}._7saw6sf{padding-bottom:50%}.wxehum5{padding-bottom:75%}._4vjecf9{padding-bottom:66.66666667%}._3dnq9wj{padding-bottom:40%}._565jrvr{background-position:50%;background-size:cover;background-repeat:no-repeat}._2h49h5v,._3dnq9wj,._4gepg6u,._4vjecf9,._7saw6sf,._34vx49v,._3624yur,.wxehum5{height:0;overflow:hidden}._2h49h5v img,._3dnq9wj img,._4gepg6u img,._4vjecf9 img,._7saw6sf img,._34vx49v img,._3624yur img,.wxehum5 img{width:100%}._6kyuv5a{border-radius:9px}._61hptpg{border-top-left-radius:0}._5729wdf{border-top-right-radius:0}._28ywksm{border-bottom-right-radius:0}._4znkr63{border-bottom-left-radius:0}._66yhbny{font-size:14px;color:#333;line-height:24px;margin-top:2px}._5fdnu4y{color:#f60;font-size:14px;line-height:22px;vertical-align:middle;margin:5px 0}._2hnej9y{position:relative}._43apezs{position:absolute;left:0;top:0;width:100%;height:100%;background:radial-gradient(transparent 50%,rgba(0,0,0,.05) 100%);transform:translateZ(0)}._6kyuv5a ._43apezs{border-radius:9px}._61hptpg ._43apezs{border-top-left-radius:0}._5729wdf ._43apezs{border-top-right-radius:0}._28ywksm ._43apezs{border-bottom-right-radius:0}._4znkr63 ._43apezs{border-bottom-left-radius:0}._2hnej9y._4gepg6u{padding-bottom:0;height:92px}.ec-2246 ._2hnej9y._4vjecf9{height:160px;width:240px;padding:0;margin:auto}body ._29wz5ed{overflow:hidden;font-size:0;display:flex}body ._5cd6n94{min-width:35px;max-width:35px;margin-right:8px;vertical-align:top}body ._2nu45h5{width:100%;height:100%;background:url(//nv00.cdn.bcebos.com/nv01/static/ecom/img/pc/head-img-535c333798.png) no-repeat 50%;background-size:100% 100%}body ._2uvtfb6{height:35px;min-width:0}body .s1gjn5b{font-size:16px;color:#000;line-height:1;margin-bottom:8px;white-space:nowrap;text-overflow:ellipsis;overflow:hidden}body ._8vzghvm{color:#999;font-size:12px;line-height:1}body ._29wz5ed ._2msvcy6 img{width:100%}body ._29wz5ed ._4qfz8fz{margin-right:15px}body ._5cd6n94{min-width:40px;max-width:40px;border-radius:50%;overflow:hidden}body .s1gjn5b{margin-bottom:0;font-size:14px;color:#333;line-height:20px;font-weight:700}body ._8vzghvm{margin-top:3px;color:#9eacb6;line-height:17px} 热心网友广告2021-11-25指标公式_炒股入门:股票知识,股票术语,k线图,炒股技巧,投资策略,m.lj168.com莫颜辰儿2016-12-15知道答主回答量:6采纳率:0%帮助的人:4322我也去答题访问个人页关注展开全部证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)已赞过已踩过<你对这个回答的评价是?评论收起欧同舟常数2020-05-02知道答主回答量:15采纳率:0%帮助的人:2981我也去答题访问个人页关注展开全部f(b)+f(a)=2f(a)+(f(b)-f(a))f(b)=f(a)+(f(b)-f(a))f(b)/dx=∫f(x)/dx+f(a)/dx=f(a)/dxf(a)=f(b)a=b⇒∫f(x)dx=0已赞过已踩过<你对这个回答的评价是?评论收起sumeragi693高粉答主2016-02-27·繁杂信息太多,你要学会辨别知道大有可为答主回答量:3.8万采纳率:79%帮助的人:1.2亿我也去答题访问个人页关注展开全部利用变上限积分函数来证牛顿莱布尼茨公式是什么

牛顿莱布尼茨公式是:f(x)dx=F(b)-F(a),牛顿-莱布尼茨公式(Newton-Leibnizformula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。

微积分数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

它是数学的一个基础学科。

牛顿莱布尼茨公式是什么啊?谢谢~~

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3652694.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-14
下一篇 2022-10-14

发表评论

登录后才能评论

评论列表(0条)