sin平方x的积分= 1/2x -1/4 sin2x + C(C为常数)。
解答过程如下:解:∫(sinx)^2dx=(1/2)∫(1-cos2x)dx=(1/2)x-(1/4)sin2x+C(C为常数)分部积分:(uv)'=u'v+uv'得:u'v=(uv)'-uv'两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv'dx即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv扩展资料:常用积分公式:1、∫0dx=c2、∫x^udx=(x^(u+1))/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c10、∫1/√(1-x^2) dx=arcsinx+c
sinx平方的积分是什么?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)