什么是共轭复数

什么是共轭复数,第1张

什么是共轭复数 高中数学什么是复数,纯虚数,共轭复数

复数是形如z=a+bi(a,b均为实数)的数,其中a称为实部,b称为虚部,i称为虚数单位。

纯复数是复数的一种,即复数是由纯复数与非纯复数构成。

复数的基本形式为a+bi。

其中a和b为实数,i为虚数单位,其平方为-1。

共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。

扩展资料高中数学复数运算法则:1、加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是(a+bi)+(c+di)=(a+c)+(b+d)i.两个复数的和依然是复数,它的实部是原来两个复数实部的和,虚部是原来两个虚部的和。

复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有:z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。

2、减法法则复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是(a+bi)-(c+di)=(a-c)+(b-d)i.两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。

已赞过已踩过已赞过已踩过已赞过已踩过<你对这个回答的评价是?评论收起 ._4m59a3r{padding:30px 0 20px 42px;border:0;background-color:#fff;position:relative;zoom:1;margin-bottom:10px}._4m59a3r.ec-1841{padding:20px 0}._4m59a3r.ec-2246{padding:20px 0 10px}.ec-1841 ._44pkrw8{font-size:16px;margin-bottom:-5px}._44pkrw8{position:relative;overflow:hidden;line-height:25px;height:25px;color:#7a8f9a}._44pkrw8 h2{margin:0;padding:0}._44pkrw8:after{content:" ";display:block;height:0;clear:both;visibility:hidden}a._53wjrpp{float:right;color:#666;text-decoration:none;font-size:12px;margin-left:8px}._3sjgky6{font-size:13px;line-height:normal;color:#666;line-height:20px;margin-top:10px}._5qv9qjj{position:relative;margin-top:15px}._5qv9qjj h3{padding:0;font-weight:400}._5qv9qjj a{text-decoration:none}._5qv9qjj em{color:#d81419;font-style:normal}.ec-2246 ._5qv9qjj{margin-top:20px}._2md3yaj{margin-top:10px}._8tzhv8k{margin-top:24px}._2n9tg5c{display:block;width:auto;overflow:hidden}._2pgsygz,._3e8y5sz,._3qq8arb,._3snc425,._4r71dp9,._6hxazj8,._7n8mzey,._7wu6jbr,._25ypd8e,._58qg8g6,._78q33t7{position:relative;min-height:1px;float:left;box-sizing:border-box}._6hxazj8{width:8.33333333%}._78q33t7{width:16.6666666%}._4r71dp9{width:25%}._25ypd8e{width:33.33333333%}._58qg8g6{width:50%}._3snc425{width:58.3333333%}._7wu6jbr{width:66.66666667%}._3qq8arb{width:75%}._3e8y5sz{width:83.3333333%}._7n8mzey{width:91.66666667%}._2pgsygz{width:100%}._4xt2t91{float:right}body a._8r3sgmj,body div._8r3sgmj{font-family:Arial,Helvetica,sans-serif;text-decoration:none;color:#333;font-size:14px!important;line-height:19px;margin-bottom:10px;display:block}a._8r3sgmj:hover{color:#34b458;text-decoration:underline}a._8r3sgmj font{color:#34b458}a._8r3sgmj div{word-break:break-all}._2vp72m4{white-space:nowrap;text-overflow:ellipsis;overflow:hidden}._37n8ad5{-webkit-line-clamp:2}._5waejsg,._37n8ad5{display:-webkit-box;word-break:break-all;word-wrap:break-word;-webkit-box-orient:vertical;overflow:hidden}._5waejsg{-webkit-line-clamp:3}._2htasef{display:-webkit-box;-webkit-line-clamp:4;word-break:break-all;word-wrap:break-word;-webkit-box-orient:vertical;overflow:hidden}body .ds4ghcq{font-family:Arial,Helvetica,sans-serif;font-size:12px;line-height:22px;transform:translateY(.4666666667em);padding-top:0;color:#7a8f9a;position:relative}body .ds4ghcq:before{content:"";margin-top:-10px;display:block;height:0}body .ds4ghcq a{color:#7a8f9a;display:block}body .ds4ghcq a ._36v43n5{color:#666}body .ds4ghcq button{float:right;color:#38f;font-size:12px;background:#fff;border:1px solid;padding:7px 13px;border-radius:3px;line-height:12px;position:absolute;right:0;bottom:0}body .ds4ghcq ._2n4a8n5{margin-left:5px}body .ds4ghcq ._5pyvpnv{display:inline-block;width:22px;height:22px;line-height:0;vertical-align:middle;margin-right:7px;margin-top:-2px;border:1px solid #eee;border-radius:50%}._86c1h4n{position:absolute;right:0}.ds4ghcq .ec-showurl-line:hover{text-decoration:underline}.ds4ghcq .ec-showurl-line{color:#9eacb6}body .tqf6eu9{font-size:12px;line-height:22px;transform:translateY(.4166666667em);padding-top:0}body .tqf6eu9:before{content:"";margin-top:-10px;display:block;height:0}body .tqf6eu9 a,body .tqf6eu9 div{color:#333}body .tqf6eu9 ._5cts8sp{font-size:15px;color:#999;line-height:25px}body .tqf6eu9 ._7rt4vyd{margin-right:5px}.tqf6eu9 font{color:#34b458}.ec-2246 .tqf6eu9 font{color:#c60a00}.ec-2246 .tqf6eu9{font-size:16px}.ec-2246 ._2cp3m46{position:relative}.ec-2246 ._2cp3m46:after{position:absolute;bottom:0;right:0;display:inline-block;padding-left:10px;padding-right:0;content:"70B951FB67E5770B8BE660C5";color:#34b458;background-color:#fff}.ec-2246 ._2cp3m46:before{position:absolute;bottom:0;right:90px;width:47px;height:29px;content:"";background-image:linear-gradient(270deg,#fff,hsla(0,0%,100%,0))}body ._29wz5ed{overflow:hidden;font-size:0;display:flex}body ._5cd6n94{min-width:35px;max-width:35px;margin-right:8px;vertical-align:top}body ._2nu45h5{width:100%;height:100%;background:url(//nv00.cdn.bcebos.com/nv01/static/ecom/img/pc/head-img-535c333798.png) no-repeat 50%;background-size:100% 100%}body ._2uvtfb6{height:35px;min-width:0}body .s1gjn5b{font-size:16px;color:#000;line-height:1;margin-bottom:8px;white-space:nowrap;text-overflow:ellipsis;overflow:hidden}body ._8vzghvm{color:#999;font-size:12px;line-height:1}body ._29wz5ed ._2msvcy6 img{width:100%}body ._29wz5ed ._4qfz8fz{margin-right:15px}body ._5cd6n94{min-width:40px;max-width:40px;border-radius:50%;overflow:hidden}body .s1gjn5b{margin-bottom:0;font-size:14px;color:#333;line-height:20px;font-weight:700}body ._8vzghvm{margin-top:3px;color:#9eacb6;line-height:17px} 淘宝热卖广告2021-11-26购物上淘宝,诚信商家,高人气热卖商品,淘你满意!支付无忧,交易更放心!simba.taobao.com燕子归巢月满楼推荐于2017-11-25·TA获得超过3242个赞知道小有建树答主回答量:1118采纳率:81%帮助的人:192万我也去答题访问个人页关注展开全部复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)当复数a+bi中a=0且b≠0时,z=bi,我们就将其称为纯虚数。

两个实部相等,虚部互为相反数的复数互为共轭复数

共轭复数是什么

共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数(conjugatecomplexnumber)。

当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身,当虚部不等于0时也叫共轭虚数。

复数z的共轭复数记作z,上加一横,有时也可表示为Z*。

同时,复数z上加一横,称为复数z的复共轭(complexconjugate)。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3688898.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-14
下一篇 2022-10-14

发表评论

登录后才能评论

评论列表(0条)

保存