圆内接四边形的性质

圆内接四边形的性质,第1张

圆内接四边形的性质 圆内接四边形的性质

圆内接四边形的性质如下:1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°2、圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC3、圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB4、同弧所对的圆周角相等:∠ABD=∠ACD5、圆内接四边形对应三角形相似:△ABP∽△DCP(三个内角对应相等)扩展资料圆的性质圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

参考资料来源:百度百科—圆内接四边形

圆内接四边形的性质是什么?

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3936377.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-20
下一篇 2022-10-20

发表评论

登录后才能评论

评论列表(0条)

保存