二项式的各项系数之和,可以采用赋值法。
二项式系数之和公式为C(n,0)+C(n,1)+...+C(n,n)=2^n。
二项式系数,或组合数,是定义为形如(1 + x)*6*7展开后x的系数(其中n为自然数,k为整数)。
从定义可看出二项式系数的值为整数。
项式系数符合等式可以由其公式证出,也可以从其在组合数学的意义推导出来。
如第一式左项表示从n+1件选取k件的方法数,这些方法可分为没有选取第n+1件,即是从其余n件选取k件;和有选取第n+1件,即是从其余n件选取11件。
而第二式则是每个从n件选取k件的方法,也可看为选取其余n+1k件的方法。
扩展资料三角形本来就是二项式展开式的算图. 对杨辉三角形熟悉的考生,比如熟悉到了它的第6行:1,6,15,20,15,6,1三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果. 这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.
各项系数之和,二项式系数之和的区别是?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)