圆周率是圆的周长与直径的比值:π=C/D=C/2R其中:C为圆的周长,D为圆的直径,R为圆的半径。
或直接定义为单位圆的周长的一半。
由相似图形的性质可知,对于任何圆形,C/D的值都是一样,这样就定义出常数π。
扩展资料:历史上最马拉松式的人手π值计算:其一是德国的鲁道夫·范·科伊伦(Ludolph van Ceulen),他几乎耗尽了一生的时间,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolphine number;其二是英国的威廉·山克斯(William Shanks),他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。
可惜,后人发现,他从第528位开始就算错了。
每年3月14日为圆周率日。
“终极圆周率日”则是1592年3月14日6时54分(因为其英式记法为“3/14/15926.54”,恰好是圆周率的十位近似值)和3141年5月9日2时6分5秒(从前往后,3.14159265)。
参考资料:百度百科-圆周率
圆周率计算公式标准?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)