1、SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。
5、RHS(Right angle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是用SSS原理)下列两种方法不能验证为全等三角形:1、AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。
2、SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。
扩展资料不能验证全等三角形的判定AAA(角、角、角),指两个三角形的任何三个角都对应地相同。
但这不能判定全等三角形,但AAA能判定相似三角形。
在几何学上,当两条线叠在一起时,便会形一个点和一个角。
而且,若该线无限地廷长,或无限地放大,该角度都不会改变。
同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。
这样,便能得知若边无限地根据比例加长,角度都保持不变。
因此,AAA并不能判定全等三角形。
但在球面几何上,AAA可以判定全等三角形(运用三角形与其极对称三角形的边角关系证明),而AAS不能判定全等三角形(球面三角形内角和大于180°)。
全等三角形的判定方法五种分别是什么?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)