数学分析三大基本内容_数学分析第三版_数学分析第三版下册

数学分析三大基本内容_数学分析第三版_数学分析第三版下册,第1张

数学分析三大基本内容_数学分析第三版_数学分析第三版下册 如何通俗地介绍一下全部三次数学危机

讨论一下@Dr How 提出的如下问题:将无理数、无穷小量和罗素悖论称作「三次数学危机」的说法,除中文互…

大学数学主要学的是些什么内容?

大学的数学学习内容属于高等数学,主要的内容有:
1、极限
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限是解决高等数学问题的基础。2、微积分
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,在许多领域都有重要的应用。3、空间解析几何
借助矢量的概念可使几何更便于应用到某些自然科学与技术领域中去,因此,空间解析几何介绍空间坐标系后,紧接着介绍矢量的概念及其代数运算。4、级数
级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系─函数。5、微分方程
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。通过对微分方程的求解,可以解决许多物理学问题。参考资料百度百科-高等数学

什么是数学的三大危机?

在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起...

数学分析究竟在讲些什么?

学习数学分析两个学期了,始终感觉是个门外汉,遇到问题不能很好地运用数分这种思维 or 这个工具。概率论…

历史最伟大的三大数学家是谁?

历史最伟大的三大数学家是谁?在世界数学史上,最伟大的三位数学家,从古至今排列依次为阿基米德、牛顿(Newton)、高斯(Gauss)。一、阿基米德【:-数学家,三大,历史

如何通俗地解释数学的三大哲学基础流派:逻辑主义、形式主义、直觉主义?

既然题主要通俗那么我就尽量用最简短的人话来写了。以下流派的实在论深度(姑且)从浅到强排列。虚无主义…

数学的三大危机

无理数的发现─第一次数学危机
大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!无穷小是零吗?第二次数学危机
18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础-无穷小的问题,提出了所谓贝克莱悖论。他指出:“牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续─先设x有增量,又令增量为零,也即假设x没有增量。他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,“dx为逝去量的灵魂”。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚...

数学的三大基本能力是什么

想学好数学,关键是培养2113他们的三种数学能力5261,其4102一是阅读能力,其二是思维能力,1653其三是书面表达能力。数学和语文一样同样需要培养阅读能力,若他们连题目也无法读懂的话那又谈何解题呢:)而在解题的整个过程中就要相应的培养他们的独立思考的习惯,“逼”他们去想;思考探索之后就轮到书写这一环节了,逻辑性强流畅整洁的书面表达肯定受我们老师的青睐啦!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4563800.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-04
下一篇 2022-11-04

发表评论

登录后才能评论

评论列表(0条)

保存