[拼音]:Ajimide
[外文]:Archimedes(约公元前287~前212)
古希腊伟大的数学家、力学家。生于西西里岛的叙拉古,卒于同地。早年在当时的文化中心亚历山大跟随欧几里得的学生学习,以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。后人对阿基米德给以极高的评价,常把他和I.牛顿、C.F.高斯并列为有史以来三个贡献最大的数学家。他的生平没有详细记载,但关于他的许多故事却广为流传。据说他确立了力学的杠杆定律之后,曾发出豪言壮语:“给我一个立足点,我就可以移动这个地球!”叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银子,便请阿基米德鉴定一下。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:“尤里卡!尤里卡!”(希腊语,意思是“我找到了”)他将这一流体静力学的基本原理,即物体在液体中减轻的重量,等于排去液体的重量,总结在他的名著《论浮体》中,后来以“阿基米德原理”著称于世。第二次布匿战争时期,罗马大军围攻叙拉古,阿基米德献出自己的一切聪明才智为祖国效劳。传说他用起重机抓起敌人的船只,摔得粉碎;发明奇妙的机器,射出大石、火球。还有一些书记载他用巨大的火镜反射日光去焚毁敌船,这大概是夸张的说法。总之,他曾竭尽心力,给敌人以沉重打击。最后叙拉古因粮食耗尽及奸细的出卖而陷落,阿基米德不幸死在罗马士兵之手。流传下来的阿基米德的著作,主要有下列几种。《论球与圆柱》,这是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题。用几何方法解决相当于三次方程的问题。《圆的度量》,计算圆内接与外切96边形的周长,求得圆周率π:。《劈锥曲面与旋转椭圆体》,研究几种圆锥曲线的旋转体,以及这些立体被平面截取部分的体积。在引理中给出公式 。《论螺线》利用一组内接和一组外接的扇形,确定“阿基米德螺线”(现用极坐标方程来表示)第一圈与始线所包围的面积等于 。《抛物线图形求积法》,确定抛物线与任一弦所围弓形的面积。《平面图形的平衡或其重心》,从几个基本假设出发,用严格的几何方法论证力学的原理,求出若干平面图形的重心。《数沙者》,设计一种可以表示任何大数目的方法,纠正有的人认为沙子是不可数的,即使可数也无法用算术符号表示的错误看法。《论浮体》,讨论物体的浮力,研究了旋转抛物体在流体中的稳定性。阿基米德还提出过一个“群牛问题”,含有八个未知数。最后归结为一个二次不定方程。其解的数字大得惊人,共有二十多万位! 阿基米德当时是否已解出来颇值得怀疑。除此以外,还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,内容是探讨解决力学问题的方法。这是1906年丹麦语言学家J.L.海贝格在土耳其伊斯坦布尔发现的一卷羊皮纸手稿,原先写有希腊文,后来被擦去,重新写上宗教的文字。幸好原先的字迹没有擦干净,经过仔细辨认,证实是阿基米德的著作。其中有在别处看到的内容,也包括过去一直认为是遗失了的内容。后来以《阿基米德方法》为名刊行于世。它主要讲根据力学原理去发现问题的方法。他把一块面积或体积看成是有重量的东西,分成许多非常小的长条或薄片,然后用已知面积或体积去平衡这些“元素”,找到了重心和支点,所求的面积或体积就可以用杠杆定律计算出来。他把这种方法看作是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它。他用这种方法取得了大量辉煌的成果。阿基米德的方法已经具有近代积分论的思想。然而他没有说明这种“元素”是有限多还是无限多,也没有摆脱对几何的依赖, 更没有使用极限方法。尽管如此, 他的思想是具有划时代意义的,无愧为近代积分学的先驱。他还有许多其他的发明,没有一个古代的科学家,象阿基米德那样将熟练的计算技巧和严格证明融为一体,将抽象的理论和工程技术的具体应用紧密结合起来。
- 参考书目
- Archimedes,The Works of Archimedes with the Method of Archimedes, Dover, New York,1912.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)