关于超越方程数值解法介绍

关于超越方程数值解法介绍,第1张

关于超越方程数值解法介绍

[拼音]:chaoyue fangcheng shuzhi jiefa

[外文]:numerical method of transcendental equations

当一元方程ƒ(z)=0的左端函数ƒ(z)不是z的多项式时,称之为超越方程。这类方程除极少数情形(如简单的三角方程)外,只能近似地数值求解,此种数值解法的研究至今仍是计算数学的主要课题。超越方程的数值解法也适用于代数方程。

数值求解超越方程时首先需要确定解的分布区域,它可以利用图解法或者根据ƒ(z)的解析性质来确定。当ƒ(x)为实函数时,确定方程实根的分布的最常用方法是应用连续函数的中值定理:如果实的连续函数ƒ(x)在区间[α,b]的两个端点的值异号,则ƒ(x)在此区间内至少有一个根。

二分法

利用中值定理计算实函数实根的简单易行的方法,算法如下:

设区间[α0,b0]满足条件ƒ(α0)ƒ(b0)<0,[α0,b0]的二等分点为计算ƒ(x0)的值,若ƒ(x0)=0,即为所求解;若ƒ(x0)ƒ(α0)<0,取α1=α0,b1=x0作为新的区间端点;若ƒ(x0)ƒ(α0)>0,取α1=x0,b1=b0作为新区间的端点。[α1,b1]的二分点为计算ƒ(x1)的值并重复上述步骤以确定新的区间[α2,b2],如此继续下去。则得到区间序列 [αkbk](k=0,1,…),它满足ƒ(αkƒ(bk)<0,并且当bkk达到指定的精确度要求时,则取为方程的解,它与精确解的误差不超过

迭代法

解超越方程的主要方法,既适用于求实根,也适用于求复根。使用这类方法时一般需要知道根的足够好的近似值。最常用的方法有牛顿法、割线法、二次插值法、双曲插值法、切比雪夫迭代法、艾特肯δ2加速方法和斯梯芬森方法等。

牛顿法

也称切线法,其计算公式为

z0为事先选定的根的初始近似。设zƒ(z)的根,若ƒ(z)在z的某邻域内二次可微,且ƒ┡(z)≠0,则当z0与z充分接近时,牛顿法至少是二阶收敛的,即当k充分大时有估计式成立,C为确定的常数。一般说来,牛顿法只具有局部收敛性,即仅当初始近似与根充分接近时才收敛。但是,当ƒ(x)为实函数,且于[α,b]上ƒ┡(x)和 ƒ″(x)不变号时,若ƒ(x)于[α,b]上有根,则只要初始近似x0满足条件ƒ(x0) ƒ″(x0)>0,牛顿法就收敛。一般情形,为减弱对初始近似的限制,可利用牛顿下降算法,其算式为

ωk>0为迭代参数,由条件│ƒ(zk+1)│<│ƒ(zk)│确定,牛顿法的k+1次近似 zk+1是ƒ(z)在zk处的泰勒展开式的线性部分的根。

割线法

又称弦位法,其算式为

z0、z1为初始近似。若ƒ(z)于其根z的某邻域二次连续可微,且ƒ┡(z)≠0,则z0、z1与z充分接近时,割线法收敛于z,并当k充分大时有估计式式中C为常数,割线法的k+1次近似zk+1是以zkzk-1为插值节点的线性插值函数的根,如果利用更精确的近似表达式则可构造出更高阶的迭代法。

二次插值法

亦称缪勒方法,是利用二次插值多项式构造的迭代算法。设已确定了zkzk-1、zk-2,则zk+1就取为以 zkzk-1、zk-2为节点的二次插值多项式两个根中与zk最接近者,其算式为

式中“±”号选成使分母的模为最大者,而-式中 当分母为0,则λk=1。

双曲插值法

利用线性分式插值构造的迭代算法,其算式为

式中μk、δk、Δzkƒk的意义与二次插值法相同。

ƒ(z)在其根z的某邻域内三次可微,并且z0、z1、z2与z充分接近,则二次插值法和双曲插值法均收敛。此外,如果ƒ┡(z)≠0,对充分大的 k,有估计式 式中 C为确定常数,τ为方程式t3-t2-t-1=0的惟一正根,τ=1.839…。

切比雪夫迭代法

三阶收敛的方法,其算式为

ƒ(z)在其根z的邻域内三次可微且ƒ┡(z)≠0时,对充分大的k,有C为确定常数。

艾特肯δ2加速方法

提高迭代法收敛速度的有效算法,设{zk}为迭代序列,δ2加速的算式为

ƒ(z)在其根z处充分光滑,且ƒ(z)≠0,则对充分大的k,有并且若zkp(p>1)阶收敛,即C0均为常数。当ƒ┡(z)=0时也有加速作用。此算法可以循环使用。

斯梯芬森方法

不算微商而二阶收敛的方法,其算式为

它可由迭代算法循环使用 δ2程序导出。

所有的迭代法用于求重根(即ƒ┡(z)=0)时, 其收敛速度将变慢,收敛阶将降低。

为求得达到所需精度的解而花费的代价是评价迭代法优劣的依据,效能指数是其重要指标,它定义为p1/寶,p 为收敛阶,μ 为每步需要计算的函数值和微商值的总数。效能指数越大,说明方法越好。二分法及上述各种迭代法的收敛阶(单根时和重根时)和效能指数如表。

只有当初始近似与解充分接近时,迭代法才收敛,这是所述算法的共同特点。减弱对初始近似的限制是提高迭代法有效性的重要措施,例如,牛顿法中引进下降因子。对一些特殊函数类(如单调函数,只有实根的解析函数等)的大范围收敛迭代算法也有一些研究工作。

参考书目
  1. A.Ostrowski,Solutions of Equations in Euclidean and Banach Spaces, 3rd ed., Academic Press, New York, 1973.
  2. J.F.Traub,Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4601577.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-05
下一篇 2022-11-05

发表评论

登录后才能评论

评论列表(0条)

保存