关于应变能介绍

关于应变能介绍,第1张

关于应变能介绍

[拼音]:yingbianneng

[外文]:strain energy

以应变和应力的形式贮存在物体中的势能,又称变形能。以一维问题为例,一个截面积为A、长度为L的等截面直杆在轴向外力P1的作用下伸长δ1(图1)。

如果不考虑变形过程中的动力效应和温度效应,则外力作的功W全部贮存到杆中,变成了杆的应变能U,其值为:

式中P为变形过程中与伸长量δ对应的载荷。在图2所示的P-δ曲线中,曲线下方的面积相当于杆中的应变能。而和曲线上方的面积相应的为余应变能(简称余能),记为U*,其值为:

用应力和应变表示的应变能和余能的公式为:

式中V=LA为杆的体积;为杆中的应力;为杆中的应变;σ1、ε1分别为P1、δ1对应的应力和应变。如果杆的材料为线d性的(即应力和应变成正比),则应变能和余能相等,即

式中E为d性模量。

在三维问题中,有六个独立的应力分量和六个独立的应变分量。在小变形的情况下,每个应力分量在相应的应变分量上作功,因此应变能和余能的表达式都包括六项:

式中σxxσyyσzzσxyσyzσzx为物体在加载过程中的应力分量;εxxεyyεzzεxyεyzεzx分别为与上述应力分量相应的应变分量;积分上限的下标1表示加载终点。对于线d性体则有:

参考书目
  1. 王启德著:《应用d性理论》,机械工业出版社,北京,1966。
  2. Y. C. Fung, Foundations of Solid Mechanics, PrenticeHall, Englewood Cliffs,New Jersey,1965.

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4608306.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-05
下一篇 2022-11-05

发表评论

登录后才能评论

评论列表(0条)

保存