关于质点振动系统介绍

关于质点振动系统介绍,第1张

关于质点振动系统介绍

[拼音]:zhidian zhendong xitong

[外文]:vibrating system of particle

不论其中的物体(如质量块、d簧等)几何尺寸而看成是一个物理性质集中的振动系统。这是一种理想情况。在实际情况下,某个振动系统是否能够看作质点振动系统,决定于系统的线度与振动波长的比值,比值很小时,就可近似地看作质点振动系统。

自由振动

系统不受外力作用,而阻尼又可以忽略不计的情况下的自然振动。自由振动的振幅决定于振动开始时系统所具有的能量,而振动的频率则决定于系统本身的参量。自由振动的频率就是系统的固有频率。

简单振动系统如图1所示。其中M为质量块的质量,Sm为d簧的力劲。描述自由振动的运动方程为

式中,称为振动的圆频率。

简谐振动

物理量随时间按正弦或余弦规律变化的振动。可由下式描述

式中A0是物理量可能达到的最大值,即简谐振动的振幅,ω是圆频率,θ是初始相位,t是时间。在简谐振动中,当经过的时间为周期的整数倍时,该物理量又恢复原值。任何复杂的自由振动都可以由许多不同频率和振幅的简谐振动合成。因此简谐振动是最简单也是最基本的振动。

阻尼振动

物体振动时受阻力作用,形成能量损失而使系统的振动幅值逐渐减小的振动。阻尼振动是由于存在阻尼力,它通常是速度的函数。描述阻尼振动的方程如下

式中Rm为振动系统的力阻(见力阻抗和力导纳)。

受迫振动

系统受外力作用而被强迫进行的振动。如果外力激励是周期性的和连续的,则受迫振动就是稳态振动。受迫振动的特性与外部激振力的大小、方向和频率密切相关。

阻尼

振动系统受到阻滞所发生的振动能量随时间或距离而耗损的现象。阻尼力通常是速度的函数,振动系统中存在着摩擦阻尼和声辐射阻尼。阻尼振动中用阻尼因数描述阻尼的作用。阻尼因数越小,振幅的衰减越慢,反之阻尼因数越大,振幅的衰减也越快。阻尼因数为

临界阻尼是阻尼振动的一种状态,是指外加阻尼力由小逐渐变大的过程中,振动物体刚开始不作周期性振动而又最快地回到平衡位置的状态。

共振

系统作受迫振动时,如激励频率有任何微小的变化都会使系统响应减小的现象称为共振。这时该系统处于共振状态。如果外加力的频率有任何微小改变都会引起策动点速度的降低,也就是激励频率恰使策动点阻抗的绝对值为极小,这时称为物体或系统与外加力发生速度共振。如外加力的频率有任何微小的改变都会引起位移振幅的减小,这时称为物体或系统与外加力发生位移共振。系统出现共振现象时的振动频率称为共振频率。这时外加力的频率与振动体的固有频率很接近或相等,系统的振幅急剧加大。

反共振

系统作受迫振动时,如激励频率有任何微小变化都会使系统的响应增加的现象,这时称为系统处于反共振状态。如果外加力的频率有任何微小改变都会引起策动点速度的增加,也就是频率恰使策动点阻抗的绝对值为极大时,这时称为物体或系统与外加力发生速度反共振。如外加力的频率有任何微小改变都会引起策动点位移振幅增加,这时就称为物体或系统与外加力发生位移反共振。出现反共振现象的频率称为反共振频率。

单摆

单摆是质点振动系统典型例子之一。一质量块(质量为M)悬于一端固定、长为l的摆线上,如图2所示。当M离开平衡位置,摆线与垂直方向之间的θ角很小时,质量块受重力FM g和拉力T的作用,沿圆弧作往复运动。

当摆线长度不变,且忽略摆线的重量和阻尼时,单摆的运动近似为简谐振动,其周期为

多自由度质点振动

简单振动系统互相耦合就形成多自由度共振系统。它的运动方程为

式中mj、ξjFj分别为第j个质量块的质量、位移、所受的力,RjkSjk分别为第j与第k个质量块之间的力阻和力劲,N为自由度数。

在上述方程中略去力阻和驱动力,则得到多自由度质点的无阻尼自由振动,它的方程为

它具有非零解的条件是圆频率ω 为相应于本征方程的解的ωn,称为系统的无阻尼固有圆频率。

对于多自由度共振系统,相应于每一个ωn的值,有一个振幅分布的特征图案,称为简正振动方式。ωn也称为简正圆频率。系统的每一振动方式相应于一个简单阻尼振动系统。多自由度质点振动的位移可以表示为各简正振动方式幅度之和。

参考书目
  1. 马大猷、沈同编著:《声学手册》,科学出版社,北京,1983。
  2. 杜功焕等编著:《声学基础》,上海科学技术出版社,上海,1981。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4608825.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-05
下一篇 2022-11-05

发表评论

登录后才能评论

评论列表(0条)

保存