[拼音]:cijilu cailiao
[外文]:magnetic recording material
在信息记录材料工业中,指以磁化的形式实现记录、还原和贮存声音、图像、数码等信息的记录材料,由磁粉制成的磁性层和承载它的支持体组成。例如:用于各种录音装置的磁带,用于外存贮器的磁盘、磁性卡片,以及用于电子计算机和大容量电视广播或家用电视的磁光盘等(见彩图)。
在物理学中将这些产品称为磁记录介质(只认为磁粉是磁记录材料)。在这些产品的消费结构中,以录音磁带所占的比例最大(见表)。磁记录具有记录密度高,稳定可靠,可反复使用,时间基准可变,可记录的频率范围宽,信息写入、读出速度快等特点。广泛应用于广播、 电影、 电视、教育、医疗、自动控制、地质勘探、电子计算技术、军事、航天及日常生活等方面。
沿革
早在1857年就出现了录音机的雏形,当时所用的是3mm宽、0.05mm厚的钢带。1898年,丹麦人W.浦耳生发明了可供实用的磁录机,所用的记录材料是直径为1mm的碳钢丝。经过不断改进,1907年出现了直流偏磁录音机,为磁记录技术的全面发展奠定了基础。随着科学技术和电子工业的发展,磁记录技术和设备不断完善,磁记录材料也得到了相应发展。1928年,德国人J.A.欧尼尔首次制成纸基磁带,带速为76.2cm/s。从此磁带进入实用化。1938年日本永井健三发明了交流偏磁法以后,磁记录技术得到进一步发展,磁带性能得到发挥,录音效果明显提高。第二次世界大战期间,欧美各国出于军事需要,秘密研究磁记录技术并取得了很大进展,出现了环形磁头、超声波交流偏磁法等新技术和器件。1947年美国M.坎拉斯制成γ-Fe2O3,为制备各种记录材料提供了广泛的材料来源,至今仍用于制造各种类型的氧化铁磁粉。日本东京通信工业公司(即现在的索尼公司)和日本东北金属公司分别于1950年和1952年研制成功磁带录音机和塑料带基磁带。1953年,美国里夫斯兄弟公司研制成功聚酯带基磁带,这种磁带目前仍在大量使用。1963年,荷兰菲利浦公司的盒式录音机和盒式录音带同时诞生,使录音技术产生了根本变革,并由声频向视频记录发展。1960年,日本的岩畸俊一发明了金属磁粉。1966年,美国杜邦公司研制成CrO2磁粉。1970年,美国明尼苏达矿业和制造公司(3M)推出Co-γ-Fe2O3磁粉,同年由日本索尼、松下电工和胜利公司联合制成的 U-matic录像机所用的 1.9cm(0.75in)录像带,就是采用这种磁粉制成的。1973和1974年日本制成商品名为 Avilyn和Beridox的新型包钴磁粉。 与此同时, 数码记录材料不断涌现。1956和1972年美国国际商用机器公司 (IBM)将硬磁盘和软磁盘作为外存贮材料分别投入计算机和微机使用。70年代初出现的磁光盘以及1975和1976年由日本索尼、胜利公司制成的盒式录像机及盒式录像带,使磁记录技术又有了新的发展。80年代以来,用于脉码调制(PCM)、垂直记录等新技术的蒸镀薄膜磁带、金属磁带等新材料的相继出现,使磁记录材料的应用进入了一个新阶段。
中国磁记录材料发展的历史较短。60年代开始研制酸法针状γ-Fe2O3磁粉,70年代相继研制出碱法磁粉、包钴γ-Fe2O3磁粉及其他改性的γ-Fe2O3磁粉等。现有100多个厂家从事磁记录材料的工业生产。
制造工艺(1)将磁浆(主要成分是磁粉、粘合剂、各种添加剂和有机溶剂等)均匀涂布在聚酯或金属支持体上,制成涂布型不连续材料,又称涂布型薄膜材料。这是一类产量最大、用途最广、技术最成熟的磁记录材料,如录音磁带、录像磁带等。
(2)将磁性材料用真空镀膜技术直接蒸镀在支持体上制成的薄膜连续材料,又称连续薄膜材料,如80年代初出现的微型镀膜磁带。
记录形式(1)纵向磁记录材料,记录在磁层表面上的信号磁化方向与记录材料运动方向一致,如录音磁带等。
(2)横向磁记录材料,记录在磁层表面上的信号磁化方向与记录材料运动方向垂直或接近于垂直,如录像磁带等。
(3)垂直磁记录材料,记录在磁层表面上的信号磁化方向与记录材料表面垂直,如磁光盘等。
主要性能首先是物理机械性能,主要指磁记录材料的外形、几何尺寸、机械强度。其次是磁性能,主要有:
(1)剩余磁感应强度Br,指材料达到饱和磁化,然后取消磁化场强所残留的磁感应强度,简称剩磁。Br高,材料的灵敏度高,输出信号大。
(2)矫顽力Hc,指消除材料剩磁所需要的磁场强度,Hc越高,越有利于高频记录,以消磁不困难为限。
(3)矩形比,指最大剩余磁感应强度Brm与饱和磁感应强度Bm的比值,即Brm/Bm,它表明材料的矩形性。比值大,可望获得宽频响的记录。再次是电性能,其指标依据应用场合而异。声频记录的电性能指标有最佳偏磁、灵敏度、频响、失真率、信噪比、最大输出电平、复印效应、消磁程度等。
发展趋势磁记录材料发展到现在,记录波长从最初的1000μm 缩短到1μm 以下,Hc从102Oe提高到103Oe以上,使用最广泛的材料有氧化物磁粉(主要有γ-Fe2O3、CrO2和包钴磁粉)和合金磁粉。
近20年来,主要从以下三个途径提高材料性能以满足高密度记录要求:
(1)寻求提高磁各向异性,如采用超微粒、高轴比的针状磁粉,CrO2和包钴磁粉以及Hc>1000Oe的合金磁粉等新材料。
(2)减薄磁层和改进涂布技术,提高Hc,实现高密度记录。常采用除去氧和省去粘合剂两种办法。前者是以金属粉取代氧化物,后者是做成薄膜。合金薄膜是这两种方法并用的结果。
(3)从记录原理和记录模式上作根本的改进。目前,通用的纵向记录当密度增高时,所产生的退磁场能使信号减小,并产生垂直分量,通过提高Hc和减薄磁层的方法虽可克服这一缺点,但有一定的限度。因此出现了垂直记录材料,它所产生的退磁场,随着密度的增加反而趋向于零。并且垂直记录不需很高的Hc和很薄的材料。有效地克服了纵向记录在高密度记录时的致命弱点。垂直记录要求材料具有垂直磁层表面的单轴各向异性。1975年以来,日本岩畸俊一研制成功的 Co-Cr垂直膜及以后的Co-Cr和Ni-Fe双层膜,都是能适应垂直记录的新型材料。1977年岩畸俊一公布了线密度高达每厘米7.9千位(每英寸20千位)的成果,而硬盘的线密度至今才不过每厘米 5.9千位(每英寸15千位)。日本东芝公司已制造出8.9cm(3.5in)垂直软磁盘,最近还开发了钡铁氧体垂直磁化录像磁带,所用磁粉为六角板状钡铁氧体超微粒子,记录密度比普通录像带高2倍,特别在短波长记录方面,其特性比金属磁带更为优良。垂直磁记录及新型的垂直磁记录材料在今后的高密度记录中将有广阔的发展前景。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)