[拼音]:yejinlu
[外文]:furnaces in metallurgical industry
冶金生产过程中对各种物料或工件进行热工处理的工业炉。热工处理是以物料或工件的升温为重要特征的处理过程,例如焙烧、熔炼、加热、热处理、干燥等。钢铁冶金和有色冶金的大部分生产环节都离不开炉子。历史上,许多生产环节的革新,产品的产量和质量的提高,都同旧冶金炉的改革和新冶金炉的应用紧密相关。平炉的出现,曾有力地推进了炼钢生产的发展。冶金工业的能源消耗,在很大程度上取决于各种冶金炉的能耗。
冶金炉简史堆火是炉子的前身,用于烧制食物或取暖,也用于烧制陶器。后来,用掘地生火或堆石砌灶方法,筑成最原始的炉子。更后,出现了坑式炉(原始的竖炉)和坩埚炉。皮囊鼓风方法的出现,扩大了炉子尺寸,并提高了炉温,为青铜冶铸创造了条件。中国商代的坑式炉直径已达1米,可冶炼大型青铜器。中国在战国初期,已开始用竖炉冶炼生铁,铸造工具。东汉时,开始使用“水排”即水力驱动的皮风囊。北宋使用悬扇式鼓风器,明代使用活塞式木风箱,风量、风压均显著提高,有力地强化了冶炼过程。燃料方面,最初用木材或木炭,公元10世纪前后,中国冶铁业已应用煤炭(比欧洲早数百年)。明代,掌握了炼焦技术,冶铁炉改用焦炭作燃料,进一步提高了产量(见冶金史)。
18世纪以来,西方国家随着航海业、机械工业、贸易的发展,冶金业取得了迅速进展,改进了各种熔炼炉、加热炉和热处理炉,出现了多种多样的炉型。20世纪以来,冶金炉朝着大容量、高产量和高热效率的方向发展。以轧钢连续加热炉为例,先是把室状炉延长一段,以便利用废气余热,继而把炉子改进成为两段式。后来,由于轧机能力不断增大,加热炉朝着大容量、高产量的方向发展。30年代出现了三段式炉,炉子产量最高达每小时150吨,单位炉底面积产量为500~600公斤/(米2·时)。50年代末,开始采用五段式炉,在提高炉尾烟气温度(达1000~1200℃)的同时,采用高温换热设备回收余热,炉子产量提高到每小时150~250吨,单位炉底面积产量达700~800公斤/(米2·时),同时,为了满足产量和质量的要求,推广应用了步进梁式炉,有的炉子采用全炉顶平焰烧嘴,炉子产量达每小时250~400吨,单位炉底面积产量达800~1000公斤/(米2·时)。70年代中期,主要工业国出现石油危机以来,降低燃料消耗已成为炉子设计的中心问题。延长不供热的预热段的长度和降低烟气排出温度,是这个时期加热炉炉型和热工工艺改变的主要趋势。
冶金炉种类现代冶金工业用炉,按热源不同,可分为燃料炉、电炉、自热炉三大类。此外,以新能源(如太阳能、原子能)为热源的冶金炉正处于研制阶段。
燃料炉以燃料的燃烧热为热源,冶金工业中使用最为广泛。由于炉内的热工特征不同,燃料炉又可分为火焰炉、竖炉、流态化炉和浴炉等四类:
(1)火焰炉 特征是火焰或燃烧产物占据炉膛的一部分空间,物料或工件占据另一部分空间。一般情况下,火焰与物料直接接触;但在有些情况下,例如为防止工件的氧化,将火焰与工件隔开,火焰的热量通过隔墙传给物料。
(2)竖炉 特征是炉身直立,大部分空间堆满块状物料,炉气通过料层的孔隙向上流动,与炉料间呈逆流换热。
(3)流态化炉 特征是炉内为细颗粒物料的流态化床。气体由下部通入。使物料“沸腾”成流态化(见流态化焙烧)。
(4)浴炉 特征是炉内盛液体介质(熔融盐类或熔融金属)。将工件浸入此介质中进行加热,主要用于热处理。浴炉热源可用燃料,也可用电。
电炉特征是以电为热源。由于电热转换方法不同,又分为电阻炉、感应炉、电弧炉三种。
自热炉特征是靠炉料自身产生的热量维持炉子的正常工作,除炉料的预热或预熔化外,炉内不需要或基本上不需要外加热量。例如:炼钢转炉,铜、镍吹炼转炉和铝热法冶炼炉。硫化矿的焙烧炉也往往是自热炉。
冶金炉还有间歇式炉和连续式炉的区别。间歇式炉的特征是分批装料、出料,炉子温度在生产过程中呈周期性变化。连续式炉特征是物料或工件连续穿炉运行,按工艺要求控制炉内各部分的温度,并保持稳定。连续式炉在产量、质量、燃料消耗、机械化、自动化等方面都比间歇式炉优越。此外还有按装料和出料方法、装料和出料机械、炉体形状、附属设备如空气预热器的名称、温度高低等称呼炉子的。冶金工业各主要生产环节常用炉子的名称和简单说明见表所示。
冶金炉生产设备
一般由炉子热工工艺系统、装出料系统和热工检测控制系统等三部分组成。
冶金炉的热工工艺系统包括炉子的工作室(炉膛)、燃料的燃烧装置或电热转换装置、空气和(或)煤气的预热器,以及风机、管道、烟道、余热锅炉和烟囱等。工作室是炉子的核心。主要的热工和工艺过程都在工作室内完成。其他部分的任务是为工作室内的热工工艺过程提供有利条件。
冶金炉装出料系统和热工检测控制系统现代化冶金炉不可缺少的两个工作系统。前者包括:炉前炉后的装料、出料机械和炉内的运料机械。后者包括:热工参数的测量仪表、显示仪表或记录仪表、过程控制仪表和执行机构等。配备这两个系统,可以实现炉子的自动化 *** 作,从而提高炉子的生产指标。
对冶金炉的基本要求对炉子的基本要求为:能满足产品的质量和产量要求;燃料和其他能源的消耗量低;建炉投资和运行费用低;耐用,劳动条件好,污染物的排放量符合环境保护要求。
一座好的炉子应同时满足上述要求。为了使产品质量好,应控制炉内温度和气氛,选择适宜的筑炉材料。炉子的生产能力必须与生产过程所要求的产量相适应。为了节约燃料,在炉子的设计和 *** 作中,必须重视热量在炉膛内充分利用,并充分利用余热。为了降低建炉投资和运行费用,应提高炉子单位容积(或炉底面积)的生产能力,简化炉子结构。炉子的废气、废水、废渣中往往含有污染物质,必须采取措施,使各种污染物的排放量不超过国家或地区的规定值。
炉子大型化、连续化、机械化和自动化,是全面满足上述要求的重要途径。目前,高炉的最大容积超过5000米3,氧气转炉的最大炉容量超过300吨。有些炉子已采用计算机控制,自动化程度很高。
冶金炉理论格日迈洛(Г.Гржимайло) 1911年提出炉子的水力学原理,把一座正在工作的炉子,看成是一条“倒置的河床”,提出了炉子设计方面的若干重要原则。对当时炉子的单位产量不高,炉内气体呈自然流动的情况是适用的,在生产上也发挥了作用。后来,为使炉子不断提高产量,逐步采用液体和气体燃料的燃烧装置,炉内气体变成强制流动,这一理论就不适用了。50年代初,思林(M.W.Thring)、格林科夫(M.A.Глинκов)等人,较全面地研究了炉内的燃烧、气体运动、传热等热工过程。1959年,格林科夫提出炉子的一般原理。他把炉子的工作制度分为三类:辐射制度、对流制度和层状制度。在讨论每一种工作制度时,都从热交换出发,对燃料的选择、燃烧过程、气流的组织等提出相应的要求。
近年来,冶金炉热工理论发展的主要特点是:在进一步明确研究对象的前提下,对炉子设计和 *** 作(包括过程控制)的最优化问题进行了更深入的研究;利用计算机和现代实验技术及模拟技术对炉内的燃烧、气体运动、传热等热工过程进行更全面的分析和研究。
冶金炉热工的研究对象是:在考虑到冶金生产工艺要求的前提下,研究下列(1)(2)(3)三类变量之间相互的关系:
(1) (2) (3)
炉子结构(几何形状、尺寸、筑炉材料的种类等)和热工 *** 作(燃料量、空气量、闸门开启度等)的变动,会影响到炉内的热工过程(传热、燃烧、气体运动)。而热工过程的变动又会影响到炉子的生产指标(单位生产率、单位热耗、炉子使用寿命等)。人们的目的是提高生产指标,但人们所能直接规定或 *** 纵的因素,既不是热工过程参数,也不是生产指标,而是结构和 *** 作参数。所以重要的是,要在研究热工过程的基础上,弄清(1)(3)两类变量之间的关系。炉子的结构和 *** 作之间,必须互相适应;各个热工过程之间也必须互相配合。同样,各生产指标之间也互相关联。在炉子热工理论的研究工作中,要十分重视同一类变量之间的相互关系。在其他条件不变的情况下,炉子的生产率的变动将引起炉子热效率的变动。为了提高炉子热效率,炉子生产率的波动必须限制在某一合理范围内。
研究冶金炉的最优化问题,不应孤立地着眼于炉子本身,还应包括炉子前后的冶金设备,因为它们在生产流程中是互相关联的。如研究轧钢厂的加热炉,应该与轧机联系起来考虑。降低钢坯的加热温度,一方面能减少加热炉的燃耗,另一方面则会增加轧机的电耗。如加热温度的降低在合理范围之内,可使加热炉和轧机的总能耗下降;如加热温度过低,就会使总能耗增加。所以应权衡得失,寻求最优方案。(见彩图)
- 参考书目
- 尹加禾译:《工业炉》,上册,冶金工业出版社,北京,1979。(W.Trinks & M.H.Mawhinney, Industrial Furnaces,Vol.Ⅰ,5th ed.,John Wiley & Sons, NewYork,1961.)东北工学院冶金炉教研室译:《工业炉》,下册,冶金工业出版社,北京,1979。(W.Trinks et al.,Industrial Furnaces,Vol.Ⅱ,4th ed.,John Wiley & Sons, NewYork,1967.)东北工学院冶金炉教研室:《冶金炉热工及构造》,中国工业出版社,北京,1962。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)