关于光的干涉介绍

关于光的干涉介绍,第1张

关于光的干涉介绍

[拼音]:guang de ganshe

[外文]:interference of light

若干个光波(成员波)相遇时产生的光强分布不等于由各个成员波单独造成的光强分布之和,而出现明暗相间的现象。例如在杨氏双孔干涉(见杨氏干涉实验)中,由每一小孔H1或H2(图1)出来的子波就是一个成员波,当孔甚小时,由孔H1出来的成员波单独造成的光强分布 I1(x)在相当大的范围内大致是均匀的;单由从孔H2出来的成员波造成的光强分布I2(x)亦如此。二者之和仍为大致均匀的分布。而由两个成员波共同造成的光强分布I(x),则明暗随位置x的变化十分显著,显然不等于I┡(x)。

每个成员波单独造成大致均匀的光强分布,这相当于要求各成员波本身皆没有明显的衍射,因为衍射也会造成明暗相间的条纹(见光的衍射)。所以,当若干成员波在空间某一区域相遇而发生干涉时,应该是指在该区域中可以不考虑每个成员波的衍射。

应注意,前面所说的光强并不是光场强度(正比于振幅平方)的瞬时值,而是在某一段时间间隔Δt内光场强度的平均值或积分值;Δt的长短视检测手段或装置的性能而定。例如,人眼观察时,Δt就是视觉暂留时间;用胶片拍摄时,Δt则为曝光时间。

干涉现象通常表现为光强在空间作相当稳定的明暗相间条纹分布;有时则表现为,当干涉装置的某一参量随时间改变时,在某一固定点处接收到的光强按一定规律作强弱交替的变化。

光的干涉现象的发现在历史上对于由光的微粒说到光的波动说的演进起了不可磨灭的作用。1801年,T.杨提出了干涉原理并首先做出了双狭缝干涉实验,同时还对薄膜形成的彩色作了解释。1811年,D.F.J.阿喇戈首先研究了偏振光的干涉现象。现代,光的干涉已经广泛地用于精密计量、天文观测、光d性应力分析、光学精密加工中的自动控制等许多领域。

相干条件

为使合成波场的光强分布在一段时间间隔Δt内稳定,要求:

(1)各成员波的频率v(因而波长λ )相同;

(2)任两成员波的初位相之差在Δt内保持不变。条件②意味着,若干个通常独立发光的光源,即使它们发出相同频率的光,这些光相遇时也不会出现干涉现象。原因在于:通常光源发出的光是初位相作无规分布的大量波列,每一波列持续的时间不超过10-9秒的数量级,就是说,每隔10-9秒左右,波的初位相就要作一次随机的改变。而且,任何两个独立光源发出波列的初位相又是统计无关的。由此可以想象,当这些独立光源发出的波相遇时,只在极其短暂的时间内产生一幅确定的条纹图样,而每过10-9秒左右,就换成另一幅图样,迄今尚无任何检测或记录装置能够跟上如此急剧的变化,因而观测到的乃是上述大量图样的平均效果,即均匀的光强分布而非明暗相间的条纹。不过,近代特制的激光器已经做到发出的波列长达数十公里,亦即波列持续时间为10-5秒的数量级。因此,可以说,若采用时间分辨本领Δt比10-5秒更短的检测器(这样的装置是可以做到的),则两个同频率的独立激光器发出的光波的干涉,也是能够观察到的。另外,以双波干涉为例还要求:③两波的振幅不得相差悬殊;

(4)在叠加点两波的偏振面须大体一致。

当条件③不满足时,原则上虽然仍能产生干涉条纹,但条纹之明暗区别甚微,干涉现象很不明显。条件④要求之所以必要是因为,当两个光波的偏振面相互垂直时,无论二者有任何值的固定位相差,合成场的光强都是同一数值,不会表现出明暗交替(欲观察明暗交替,须借助于偏振元件)。

以上四点即为通常所说的相干条件。满足这些条件的两个或多个光源或光波,称为相干光源或相干光波。

产生相干光波的方法

由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。

产生相干光波的方法可分为两种:分波面法和分振幅法。

分波面干涉

从同一源波面上分出若干个面域,使它们继续传播而发生干涉。杨氏干涉实验属于这一类。在杨氏干涉实验中是从源波面上分取出两个极小或极窄的面域。在大多数分波面干涉装置中,是将源波面分为大面积的几个部分,菲涅耳双镜干涉(图2)即为一例。此装置中,M1和M2是两个平面反射镜,二者接近于成180°角。由光源S发出的源波Wo,射在M1上的那部分反射成为波W1,射在M2上的那部分反射成分波W2;W1与W2发生干涉。

分振幅干涉

采用一块光学媒质使入射波在其表面上发生反射和折射,然后令反射波和折射波在继续传播中相遇而发生干涉。牛顿环是经典的分振幅干涉。在牛顿环装置中,透镜与平板玻璃之间所夹的空气层就是上述的媒质,源波(进入透镜后)在空气层的上表面发生反射和折射。反射波(经透镜)传入上方空气中为一个成员波;折射波在空气层下表面反射,然后(经透镜)传入上方空气中为另一成员波,两波发生干涉。

干涉可分为双光波干涉和多光波干涉(又称双光束干涉和分光束干涉)。下文中的陆末-格尔克片则是一种分振幅的多波干涉装置。

双光波干涉

即两个成员波的干涉。杨氏双孔和双缝干涉、菲涅耳双镜干涉及牛顿环等属于此类。双光波干涉形成的明暗条纹都不是细锐的,而是光强分布作正弦式的变化,这就是双光波干涉的特征。多光波干涉则可形成细锐的条纹。

多光波干涉

即多于两个成员波的干涉。陆末-格尔克片干涉(图3)属于此类。图中A为平行平板玻璃,一端开有倾斜的入射窗BC。从S发出的源波经BC进入玻璃片后在其上、下表面间多次反射。每次在上表面反射时,皆同时有一波折射入空气中。所有各次折射入空气中的波就是从同一源波按分振幅方式造成的一组成员波。在透镜L的焦平面Π上观测干涉条纹。相邻两波在P点的位相差为

式中λ 为光波在真空中的波长,n为玻璃的折射率,t为玻璃片厚度,β 为玻璃片内的光程辅助线与表面法线的夹角。在接收面光强分布的条纹十分细锐,这是多光波干涉的特征。

偏振光的干涉

在以上所举的干涉中,各成员波在考察点处可认为偏振方向大体一致。当参与干涉的两个成员波的偏振面夹有一定角(例如 90°)时,如何产生干涉见偏振光的干涉。

干涉条纹

在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。以上假定光源发出的是单色光(或者用滤光片从光源所发的许多波长的光中取出某一单色光)。当光源发出的许多波长的光皆发生干涉时,会形成彩色干涉条纹(见白光条纹)。

应用

根据光的干涉原理可以进行长度的精密计量。例如用迈克耳孙干涉仪校准块规的长度。其方法如下,用单色性很好的激光束(波长为 λ)作为光源,并在迈克耳孙干涉仪的可动镜臂上装有精密的触头,先使触头接触块规的一端,然后撤去块规,令可动镜移动。这时,每移动λ/2,两臂中光路的光程差就增加λ,从而置于干涉视场中心的检测器就输出一次强弱变化,使记数器的数字增加 1。直到触头接触基面(块规的另一端面原来放在基面上)为止。若记数器总共增加的数为n,则测得块规的长度为

精密的装置可以把n精确到±0.1以下,于是测量长度的误差不超过±λ/20。

利用干涉现象还可以检测加工过程中工件表面的几何形状与设计要求之间的微小差异。例如要加工一个平面,则可首先用精密工艺制造一个精度很高的平面玻璃板(样板)。使样板的平面与待测件的表面接触,于是此二表面间形成一层空气薄膜。若待测表面确是很好的平面,则空气膜到处等厚或者是规则的楔形。当光照射时,薄膜形成的干涉光强呈一片均匀或是平行、等间隔的直条纹。如果待测表面在某些局域偏离了平面,则此处的干涉光强与别处不同或者干涉条纹在该处呈现弯曲。从条纹变异的情况可以推知待测表面偏离平面的情况。偏离量为波长的若干分之一是很容易观察得到的。

参考书目
  1. M.玻恩、E.沃耳夫著,杨葭荪等译校:《光学原理》,上册;黄乐天等译校:《光学原理》,下册,科学出版社,北京,1978,1981。(M.Born and E. Wolf, Principles of Optics, 5th ed., Pergamon Press, Oxford, 1975.)
  2. F. A. Jenkins and H. E. White,Fundamentals of Optics, 4th ed., McGraw-Hill, Kogakusha, 1976.

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4693783.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-07
下一篇 2022-11-07

发表评论

登录后才能评论

评论列表(0条)

保存